Available online at www.sciencedirect.com





Solar Energy Materials & Solar Cells

Solar Energy Materials & Solar Cells 90 (2006) 276-282

www.elsevier.com/locate/solmat

# A thin-film solar cell of high-quality $\beta$ -FeSi<sub>2</sub>/Si heterojunction prepared by sputtering

Zhengxin Liu<sup>a,\*,1</sup>, Shinan Wang<sup>b,2</sup>, Naotaka Otogawa<sup>b</sup>, Yasuhito Suzuki<sup>a,3</sup>, Masato Osamura<sup>a</sup>, Yasuhiro Fukuzawa<sup>b</sup>, Teruhisa Ootsuka<sup>a,1</sup>, Yasuhiko Nakayama<sup>b</sup>, Hisao Tanoue<sup>c</sup>, Yunosuke Makita<sup>c,1</sup>

<sup>a</sup>Technology Development Department, System Engineers' Co., Ltd., AIST Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan

<sup>b</sup>Kankyo Semiconductors Co., Ltd., AIST Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan <sup>c</sup>National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 2, 1-1-1 Umezon, Tsukuba, Ibaraki 305-8568, Japan

> Received 20 January 2005; accepted 23 March 2005 Available online 10 May 2005

### Abstract

High-quality (110)/(101)-oriented epitaxial  $\beta$ -FeSi<sub>2</sub> films were fabricated on Si (111) substrate by the sputtering method. The critical feature was the formation of a high-quality thin  $\beta$ -FeSi<sub>2</sub> template buffer layer on Si (111) substrate at low temperature. It was demonstrated that the template is very important for the epitaxial growth of thick  $\beta$ -FeSi<sub>2</sub> films and for the blocking of Fe diffusion into the Si at the  $\beta$ -FeSi<sub>2</sub>/Si interface. Hall effect measurements for  $\beta$ -FeSi<sub>2</sub> films showed n-type conductivity, with residual electron concentration around 2.0  $\times 10^{17}$  cm<sup>-3</sup> and mobility of 50–400 cm<sup>2</sup>/V s. A prototype thin-film solar cell was fabricated by depositing n- $\beta$ -FeSi<sub>2</sub> on p-Si (111). Under 100 mW/cm<sup>2</sup>

0927-0248/\$ - see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.solmat.2005.03.014

<sup>\*</sup>Corresponding author. Tel.: +81 29 861 8066; fax: +81 29 861 8010.

E-mail address: zxliu@ni.aist.go.jp (Z. Liu).

<sup>&</sup>lt;sup>1</sup>Current affiliation: Tsukuba Laboratory, Tateyama Kagaku Industry Co., Ltd., AIST Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.

<sup>&</sup>lt;sup>2</sup>Current affiliation: NEMS Platform Research Department, Leading-Edge Technology Development Headquarters, Canon Inc., 5-1, Morisato-Wakamiya, Atsugi, Kanagawa 243-0193, Japan.

<sup>&</sup>lt;sup>3</sup>Current affiliation: FiBest Limited, 4-14-1 Myojin-Cho, Hachioji, Tokyo 192-0046, Japan.

sunlight, an energy conversion efficiency of 3.7%, with an open-circuit voltage of 0.45 V, a short-circuit current density of  $14.8 \text{ mA/cm}^2$  and a fill factor of 0.55, was obtained. © 2005 Elsevier B.V. All rights reserved.

PACS: 73.50.Pz

Keywords: Iron silicide; Template; Sputtering; Heterojunction; Solar cell

#### 1. Introduction

Because of its high optical absorption coefficient (>10<sup>5</sup> cm<sup>-1</sup> at 1.0 eV) and abundant element resources in the earth's crust, semiconducting iron disilicide ( $\beta$ -FeSi<sub>2</sub>) is expected strongly as a novel photovoltaic material with theoretical energy conversion efficiency about 16–23% [1–4]. However, up to now, there were only limited reports on  $\beta$ -FeSi<sub>2</sub> solar cell devices, and the highest conversion efficiency was only 0.35%, which was obtained from a  $\beta$ -FeSi<sub>2</sub>/Si heterojunction formed by the ion implantation method [5–7]. This value was far from practical application. The poor features of  $\beta$ -FeSi<sub>2</sub> solar cell devices might be due to the low quality of  $\beta$ -FeSi<sub>2</sub> films and un-sharp interfaces between the  $\beta$ -FeSi<sub>2</sub> films and the Si substrates, which was mainly induced by the significant interdiffusion of Fe and Si atoms during  $\beta$ -FeSi<sub>2</sub> formation. It is well known that the diffused Fe impurities in Si form deep energy levels that locate, depending on the quenching rate, at 0.10, 0.33, 0.40, 0.43 and 0.52 eV above  $E_v$ , and they work as efficient trap centers for photo-generated carriers [8,9]. This results in high series resistivity and large leakage current of  $\beta$ -FeSi<sub>2</sub>/Si heterojunction devices.

In this work, in order to testify the solar energy conversion ability of  $\beta$ -FeSi<sub>2</sub> thin films, we first fabricated high-quality  $\beta$ -FeSi<sub>2</sub> films by introducing a thin  $\beta$ -FeSi<sub>2</sub> template layer pre-formed on Si (111) substrates at low temperature. Then we deposited high-quality  $\beta$ -FeSi<sub>2</sub> films on Si to form heterojunctions as solar cell structures. For the first time, an energy conversion efficiency as high as 3.7% was obtained from an n- $\beta$ -FeSi<sub>2</sub>/p-Si cell under sunlight of air mass (AM) 1.5, 100 mW/ cm<sup>2</sup>.

#### 2. Experimental

 $\beta$ -FeSi<sub>2</sub> thin template layers and thick films were fabricated by a facing-target sputtering (FTS) method. The details about the preparation of  $\beta$ -FeSi<sub>2</sub> films as well as the FTS are described elsewhere [10]. Fe (purity: 4 N) and Si (purity: 9 N) targets were installed in two FTS sputtering units for the thin template and thick  $\beta$ -FeSi<sub>2</sub> film deposition. Silicon (111) wafers were used as substrates and cleaned by standard RCA process with hydrogen-terminated surfaces. In order to obtain high-quality  $\beta$ -FeSi<sub>2</sub> film and to reduce the diffusion of Fe atoms into the Si, a 20 nm  $\beta$ -FeSi<sub>3</sub> thin template layer was formed on the Si substrate by the reactive deposition

Download English Version:

## https://daneshyari.com/en/article/81315

Download Persian Version:

### https://daneshyari.com/article/81315

Daneshyari.com