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Abstract

In this paper, a modified kernel regression algorithm is proposed to reduce the noise of pulsar profiles autonomously. Taking advantage
of the classical autonomous kernel regression the presented algorithm based on the second-order derivative compensation is developed to
improve the performance of the Nadaraya-Watson kernel estimator. The periodic extension technique is introduced to eliminate the
boundary issue inherent in kernel regression means. Four indexes are utilized to explore the performance of the proposed method via both
emulated and real data. Additionally, other widely accepted denoising methods based on wavelet transformation and empirical model
decomposition are simulated to make a comparison. The experimental results have shown that the proposed algorithm achieves a higher
quality profile than the compared methods, which will help to discover the emission mechanism of pulsars. According to our experiments,
we would like to point out that a smooth profile cannot guarantee an accurate measurement (time of arrival, TOA), which indicates that it
is not necessary to denoise the epoch folding profile for estimating the TOA information in X-ray pulsar-based navigation systems.
� 2018 Published by Elsevier Ltd on behalf of COSPAR.
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1. Introduction

Pulsar is a type of rapidly-rotating neutron star that
emits radiation at varying intensities. The radio emission
is continuous through its magnetic axis, which is in a differ-
ent direction to its rotation axis. Thus, an observer sees a
pulse of radiation each time the beam sweeps across his
line-of-sight (Lorimer and Kramer, 2012). Since the pulse
period equals the rotation period of the spinning neutron
star, the period of pulsar signals is quite stable. With the
benefit of these unique characteristics, X-ray pulsars are
valuable in both scientific research and engineering applica-

tions. Scientists believe that X-ray pulsars provide most
effective tests of general relativity (Antoniadis et al.,
2013) and can be used to probe relativistic effects (Lyne
et al., 2004; Taylor et al., 1979). Additionally, X-ray
pulsars provide new possible navigation and timing
schemes for spacecraft autonomous navigation (Sheikh
et al., 2006; Emadzadeh and Speyer, 2011b).

The fundamental observation of X-ray pulsars in space-
craft is X-ray photons. Afterwards, an empirical profile of
a pulsar is recovered from a series of photon time of arri-
vals (TOAs) for future analysis. These pulsar profiles have
long been recognized as an important clue to lead a better
understanding of the pulsar phenomenon in astronomy
(Gil et al., 1993; Hakobyan et al., 2017). In addition, the
measurement of time of arrival (TOA) can be obtained
by comparing the empirical profile with a standard one,
which helps to determine the position of spacecraft
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autonomously in X-ray pulsar-based navigation system.
Nevertheless, the signal-to-noise ratio (SNR) of the
observed profile is very low due to the faint source flux den-
sity. A high SNR profile is important to study the emission
mechanisms of pulsars (Gotthelf et al., 1999; Wang et al.,
2017a,b) and to estimate an accurate TOA by intuition.
Therefore, it is necessary to develop noise reduction meth-
ods of pulsar profiles.

Previous literature has demonstrated pulsar profile
denoising algorithms based on wavelet transformation
and empirical model decomposition. These methods can
be seen as the parametric regression method (Wang et al.,
2017b) which the performance heavily relies on the accu-
racy of the assumed model and sometimes needs human
visual inspection. Thus, Wang et al. (2017b) first intro-
duced the kernel regression method for addressing the
denoising issue of pulsar profiles autonomously. Instead
of involving a specific model, kernel regression is a non-
parametric method based on the data itself (Takeda
et al., 2007) and kernel functions are used as weights to
estimate a given point from all measurements.

The concept of kernel methods appeared during the
mid-twenty century (Nadaraya, 1964; Watson, 1964) and
then became well-known with the emergence of machine
learning. Recently, two-dimensional kernel regression has
become popular in image processing (Takeda et al., 2007;
Zhang et al., 2013). While there are two major challenges
using kernel regression technique to signal denoising prob-
lems: (1) the bandwidth selection of kernel function (2) low
performance near the boundary (Wand and Jones, 1994).
The bandwidth is a positive number in kernel functions
and the choose of it is a famous trade-off between the bias
and variance of the estimator (Köhler et al., 2014; Wand
and Jones, 1994). A kernel regression method performs
badly or even fails if the bandwidth is selected improperly.
The boundary is the variable which is near the end of the
support. In the boundary region, the estimated variance
and bias become worse because of lacking observations
(Baszczyńska, 2016). In order to improve the performance
near the boundary, local polynomial kernel estimators
(LPKEs) are proposed, which a particular point is esti-
mated by ‘‘locally” fitting a pth degree polynomial (Wand
and Jones, 1994; Cleveland, 1979). Comparing with the
Nadaraya-Watson kernel regression (NWKR) estimator
(Wand and Jones, 1994), the best fitting parameters of
LPKEs are first given by a weighted least square problem
in each estimated point. At the cost of considerable compu-
tation, LPKEs have attractive results and boundary prop-
erties. To the authors’ knowledge, though previous work
has studied pulsar profile denoising based on kernel regres-
sion methods, neither of above challenges has been fully
presented.

This paper addresses the two challenges in pulsar profile
denoising issues. A modified kernel regression algorithm
using the second-derivative compensation is studied to
reduce the bias of regression functions. The boundary effect
is eliminated by periodic extension with small computation.

Four indexes, including SNR, Pearson correction coeffi-
cient (PCC), mean and standard deviation of TOA, are uti-
lized to evaluate the performance of the proposed method
and to study whether the accuracy of TOA and the SNR of
empirical profiles has a positive correlation. Through sim-
ulation experiments, the proposed method outperforms
current pulsar profile denoising methods such as wavelet-
based methods and empirical model decomposition meth-
ods, as well as has better robustness on bandwidth selection
than the NWKR method. Moreover, our experimental
results suggest that a clear positive relationship between
the accuracy of TOA and the SNR of profiles does not
exist.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the classical kernel regression technique
in one-dimension. Section 3 derives a modified kernel
regression method based on the properties of pulsar pro-
files. The performance of the proposed method is analyzed
via computer simulations in Section 4 and concluding
remarks are discussed in Section 5.

2. Related works

2.1. Classical kernel regression and its properties

Considering a nonlinear model is

yi ¼ mðxiÞ þ eðxiÞ; i ¼ 1; 2; . . . ; n ð1Þ
where mð�Þ is called the regression function, eðxiÞ is the
noise that obeys Gaussian distribution, and xi is the mea-
surement epoch corresponding to measurement yi.

For LPKEs, the regression function m̂ðx; p; hÞ at the
point x is obtained by fitting a pth order polynomial. The
coefficient of the polynomial fbng can be solved by the fol-
lowing optimization problem (Wand and Jones, 1994)

min
bn

Xn
i¼1

fyi � b0 � � � � � bpðxi � xÞpg2Khðxi � xÞ ð2Þ

where Khð�Þ is the kernel function and symmetric, h is the
bandwidth of Khð�Þ. Since the shape of the kernel function
has a small effect on the estimating result (Wand and Jones,
1994). The widely used Gaussian kernel is selected in this
paper, giving by (Wand and Jones, 1994)

KhðtÞ ¼ 1ffiffiffiffiffiffi
2p

p
h
exp � t2

2h2

� �
ð3Þ

By integration operating, the Gaussian kernel Khð�Þ
satisfiesZ

KhðtÞdt ¼ 1;

Z
tKhðtÞdt ¼ 0;

Z
t2KhðtÞdt ¼ h2 ð4Þ

After obtaining fbng, the regression function m̂ðx; p; hÞ
based on LPKEs can be expressed as (Wand and Jones,
1994)

m̂ðx; p; hÞ ¼ e1ðXT
xWxXxÞ�1

XT
xWxY ð5Þ
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