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Abstract

This paper describes an interesting and powerful approach to the constrained fuel-optimal control of spacecraft in close relative
motion. The proposed approach is well suited for problems under linear dynamic equations, therefore perfectly fitting to the case of
spacecraft flying in close relative motion. If the solution of the optimisation is approximated as a polynomial with respect to the time
variable, then the problem can be approached with a technique developed in the control engineering community, known as ‘‘Sum Of
Squares” (SOS), and the constraints can be reduced to bounds on the polynomials. Such a technique allows rewriting polynomial
bounding problems in the form of convex optimisation problems, at the cost of a certain amount of conservatism. The principles of
the techniques are explained and some application related to spacecraft flying in close relative motion are shown.
� 2018 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The search for fuel-optimal manoeuvres is a classical
problem in space engineering (Scharf et al., 2003), which
is still thoroughly investigated by the aerospace community
in search of more efficient and reliable methods, for differ-
ent mission profiles (Li, 2016; Bolle and Circi, 2012; Qi and
Jia, 2012). The problem is of critical interest due to the
hard constraints on the quantity of fuel (and consequently,
of delta-v) that a spacecraft can carry at launch. The clas-
sical analytical approach is based on Pontryagin’s princi-
ple, which yields the classical bang-off-bang solutions
(Kirk, 2012). Nevertheless, closed form solutions of fuel-
optimal problems are often impossible to find, which

makes it necessary the use of numerical optimisation
methods.

The numerical solution of the optimal control problem,
which is central to the fuel-optimal problem, can be found
in two different ways, using indirect methods or direct
methods. Indirect methods are based on the writing of
the Hamiltonian function and on the solution of the
Euler-Lagrange differential equation. In general they lead
to very accurate results with the use of few variables. On
the contrary, direct methods are based on the transcription
of the differential problem into a pure parametric problem
which can be solved using direct optimization methods.
This kind of methods can lead to solutions as accurate as
indirect methods but requires the use of many more vari-
ables. In both cases, the discrete problem can be faced with
the algorithms developed for parameter optimization
which are typically based on the Newton method (Betts,
1998). Example of indirect methods can be seen in
Casalino et al. (1999) and Zhang et al. (2015), while

https://doi.org/10.1016/j.asr.2018.02.020

0273-1177/� 2018 COSPAR. Published by Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: paolo.massioni@insa-lyon.fr (P. Massioni), mauro.

massari@polimi.it (M. Massari).

www.elsevier.com/locate/asr

Available online at www.sciencedirect.com

ScienceDirect

Advances in Space Research xxx (2018) xxx–xxx

Please cite this article in press as: Massioni, P., Massari, M. Convex optimisation approach to constrained fuel optimal control of spacecraft in
close relative motion. Adv. Space Res. (2018), https://doi.org/10.1016/j.asr.2018.02.020

https://doi.org/10.1016/j.asr.2018.02.020
mailto:paolo.massioni@insa-lyon.fr
mailto:mauro.massari@polimi.it
mailto:mauro.massari@polimi.it
https://doi.org/10.1016/j.asr.2018.02.020
https://doi.org/10.1016/j.asr.2018.02.020


example of direct methods can be seen in Massari and
Bernelli-Zazzera (2009) and Massari et al. (2003).

In general, both indirect and direct methods are very
powerful, but being based on the Newton method, they
require an initial solution guess to start the iterations.
Moreover, this solution should be near enough to a local
minimum to guarantee the convergence of the method to
a solution. This shows also a second drawback of those
methods, only local minima can be reached, no informa-
tion on the globality of the optimum can be achieved.

The method presented in this paper belongs to the class
of convex optimisation based methods, as do those based
on Linear Programming (LP) (Magnani and Boyd, 2009)
and moment measures (Claeys et al., 2014), which have
also been applied to the problems described above. In this
article, we explore an approach based on a technique
known as Sum Of Squares (SOS) (Parrilo, 2003), which lets
one formulate polynomial optimisation problems in the
form of a convex optimisation without any need of dis-
cretising the dynamical equations. With this technique,
assuming that the solution has a polynomial expression,
the problem can be cast into the form of an optimisation
under Linear Matrix Inequality (LMI) constraints or
Semi-Definite Programming (SDP), a form of convex opti-
misation that has been developed in the last decades in the
context of automatic control (Boyd et al., 1994). The inter-
est of this method is that it turns the problem into a convex
one, in a very direct and simple way which is easily under-
standable even for the non-experts of the specific optimisa-
tion techniques involved. For this reason, this paper has
also an introductory or tutorial part which allows a better
understanding of the fundamentals.

As it will be explained later on, the reformulation of the
problem required by the technique is done at the cost of a
loss of precision, but on the other hand, the convex formu-
lation does not require any initial guess, and it does not
feature the risk of yielding local optima. The proposed
technique clearly brings advantages with respect to classi-
cal indirect or direct approach to the solution of optimal
control problems.

The paper is organised as follows. Section 2 introduces
and formulates the problem. Sections 3 and 4 contain a
short tutorial for explaining the ideas behind Sum Of
Squares (SOS) and Linear Matrix Inequalities (LMIs) tech-
niques, which we think improve the readability of this
paper, but they can be skipped by those who are already
familiar. Section 5 contains the baseline algorithm that is
the main result of this article, whereas Section 6 introduces
a few variants on it. Section 7 shows a set of application to
spacecraft in close relative motion and finally Section 8
draws the conclusions.

1.1. Notation

We denote by N the set of non-negative integers, by R

the set of real numbers and by Rn�m the set of real n� m
matrices. Rm½x� is the set of real-valued polynomials of

degree m in the entries of x, A> indicates the transpose of
a matrix A; the notation A � 0 (resp. A � 0) indicates that
all the eigenvalues of the symmetric matrix A are positive

(resp. negative) or equal to zero. The symbol
n
k

� �
indi-

cates the binomial coefficient, for which we have

n

k

� �
¼ n!

k!ðn� kÞ! :

For the reader’s convenience, all the symbols of this
paper with exception of those used in the examples are
listed at the end in the Appendix.

2. Problem formulation

We consider linear dynamic equations describing the
motion of one or more point masses, of the kind

€xðtÞ ¼ f ðxðtÞÞ þ uðtÞ ð1Þ
where t is the time variable, xðtÞ ¼ ½x1ðtÞ; . . . ; xnðtÞ�> 2 Rn

the position vector (with n 2 N), uðtÞ ¼ ½u1ðtÞ; . . . ; unðtÞ�>
2 Rn a vector of control actions and f ðxðtÞÞ ¼
½f 1ðxðtÞÞ; . . . ; f nðxðtÞÞ�> a vector-valued linear function
coming from the physics of the problem. The typical
fuel-optimal problem consists in finding a trajectory x�ðtÞ
which brings the state from an initial position x0 and
velocity v0 at time t ¼ 0, to a final position xf and velocity
vf at a fixed time tf , minimising the time integral of a one-
norm of u�ðtÞ ¼ €x�ðtÞ � f ðx�ðtÞÞ. This can be formulated
formally as follows.

Problem 1 (Fuel-optimal control). Given (1), tf > 0;
umax;i > 0; x0; v0; xf ; vf , find a continuous and derivable
function x�ðtÞ : ½0; tf �# Rn such thatZ tf

0

X
i

ju�i ðtÞjdt is minimised ð2Þ

under x�ð0Þ ¼ x0; _x�ð0Þ ¼ v0, x�ðtf Þ ¼ xf ; _x�ðtf Þ ¼ vf ; ju�i ðtÞj
6 umax;i, with u�i ðtÞ ¼ €x�i ðtÞ � f iðx�ðtÞÞ.

Notice that by setting one of the umax;i as very small or
close to zero, one can take into account situations where
not all the directions of the space are directly actuated,
i.e. the cases in which uiðtÞ ¼ 0 for a few (not all) values
of i.

The methods discussed in this paper cannot deal directly
with Problem 1, but rather with a relaxation of it. By
‘‘relaxing a problem”, we mean replacing the original
problem with a second one that converges to the first under
certain hypotheses. The advantage of doing so is that the
second problem is amenable to a new approach, and it is
formulated as follows.

Problem 2 (Relaxed fuel-optimal control). Given (1),
tf > 0; umax;i > 0; x0; v0; xf ; vf ; N 2 N; d 2 N, find a
piecewise-polynomial vector-valued function x�ðtÞ : ½0; tf �
# Rn defined as
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