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Abstract

We model regular and irregular variation of ionospheric total electron content as stationary and non-stationary processes, respec-
tively. We apply the method developed to SCINDA GPS data set observed at Bahir Dar, Ethiopia 11:6�N;37:4�Eð Þ. We use hierarchical
Bayesian inversion with Gaussian Markov random process priors, and we model the prior parameters in the hyperprior. We use Matérn
priors via stochastic partial differential equations, and use scaled Inv� v2 hyperpriors for the hyperparameters. For drawing posterior
estimates, we use Markov Chain Monte Carlo methods: Gibbs sampling and Metropolis-within-Gibbs for parameter and hyperparam-
eter estimations, respectively. This allows us to quantify model parameter estimation uncertainties as well. We demonstrate the applica-
bility of the method proposed using a synthetic test case. Finally, we apply the method to real GPS data set, which we decompose to
regular and irregular variation components. The result shows that the approach can be used as an accurate ionospheric disturbance char-
acterization technique that quantifies the total electron content variability with corresponding error uncertainties.
� 2017 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Ionosphere is the Earth’s upper atmosphere which con-
tains significant numbers of free electrons and ions (Schunk
and Nagy, 2009). It is very dynamic and affected by the rel-
ative position of the Sun and Earth, the solar activity and
the interactions among ionosphere, magnetosphere and
thermosphere. Sudden events of the Sun and the Earth,
geomagnetic storms, solar radio bursts and solar eclipses
also cause ionospheric disturbances (Li et al., 2013;
Zhang et al., 2005). It has both advantage and disadvan-

tage for ionospheric propagating radio wave technology
users. For terrestrial communication, ionosphere can be
used as a wave-guide, which enables far-distance communi-
cations (Rawer, 1993). It is a threat for trans-ionospheric
propagating radio wave dependent applications such as
GPS navigation, positioning, surveillance and so on
(Tiwari et al., 2013). For example, as GPS signal traverses
through the ionosphere, its group and phase velocities
delay and advances respectively compared to the velocities
in free medium, which results in error in GPS applications.
The impact of the ionosphere can be mitigated once its
behavior is understood and modeled in a proper way.
The basic parameters used to study the dynamics of the
ionosphere are electron density and total electron content
(TEC), which is defined as the integrated electron density
along a signal path of 1 m2 cross-section between a
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satellite and a receiver, its unit is TECu (1TECu ¼
1016 electrons per m2). The temporal behavior of the iono-
sphere is described by ionospheric TEC.

Many studies have been made to investigate ionospheric
TEC short-term and long-term variabilities; to estimate
factors affecting the TEC fluctuations; to analyze and
develop empirical models (Daniell et al., 1995; Pi et al.,
1997; Forbes et al., 2000; Zhang et al., 2005; Chauhan
and Singh, 2010; Li et al., 2013; Tiwari et al., 2013). For
example, Chauhan and Singh (2010) investigated the diur-
nal and seasonal variations of TEC at Agra, India using 12
months GPS data. Their result shows the existence of low-
est TEC values in winter and largest values in equinox and
summer. Their study also reveals the existence of anoma-
lous variations during the period of magnetic disturbances.
Li et al. (2013) constructed a linear time series model to
study daily averaged TEC variability. They used the model
to examine the influences of different factors and its charac-
teristics at different latitudes. Some authors also investi-
gated ionospheric TEC distribution using different
tomography techniques (Kunitsyn et al., 2011;
Pokhotelov et al., 2011; Van de Kamp, 2013; Ghaffari
Razin and Voosoghi, 2016, 2017). For instance, Ghaffari
Razin and Voosoghi (2017) studied ionospheric tomogra-
phy using neural network and particle swarm optimization
over the Iranian region. The result gives a regional imaging
of ionospheric TEC distributions. However, in all the
above studies minimal attention is given to the direct quan-
tification and characterization of TEC disturbances.

Radio signal scintillation and TEC fluctuations have
been characterized mostly using the root mean square devi-
ations of the TEC, the rate of TEC (ROT) (in TECU/min)
and the rate of TEC index (ROTI) (Pi et al., 1997). The
ROTI, defined as the standard deviation of the detrended
ROT values over some time interval, is mostly considered
to effectively characterize ionospheric fluctuation.
Recently, Olwendo et al. (2016) used ionospheric scintilla-
tion analysis (S4 index) to study the morphology of iono-
spheric bubbles over the Kenyan region. Their
investigation shows that the scintillation events mainly
observed to the northwest and southwest of the sky. Their
result, in addition, reveals that the L-band scintillation can
last till post-midnight hours (01:00–02:00 LT). Patrick
et al. (2016) also used ROTI values with 5-min time inter-
vals to study the trends of ionospheric disturbances during
quiet geomagnetic conditions using GNSS-derived TEC
data over the African low latitudes. Their result reveals
that the strength of the ionospheric disturbance reduces
from west to the east in the region.

However, though some studies consider the use of 5-min
time intervals for the calculation of ROTI values, there are
studies who use different time intervals for the calculation
of the ROTI, which may result in different ROTI values
in magnitude (Jacobsen, 2014). The choice of time interval
is generally a trade-off between time resolution and the
quality of the ROTI value, as there should be a sufficient

amount of samples per interval for the phenomenon in
question to be tractable. Hence, the choice of subjective
time intervals in the calculation of ROTI values restricts
the use of ROTI only to indicate whether ionospheric irreg-
ularity exists or not.

To overcome the problem regarding quality of ROTI
values due the subjective choice of time interval, Bires
et al. (2016) proposed a new approach using the Bayesian
inversion technique to study TEC fluctuation from
detrended ROT and ROTI, through the assumption of
the TEC as a random stationary process by considering
short time scale. However, to consider the TEC as station-
ary process, how short has to be ’short time scale’, depends
on the frequency of the fluctuation of the phenomenon of
interest. Zhang et al. (2005) had also used the time series
of TEC and the autocovariance function of the stationary
process to construct independent and identically dis-
tributed Gauss samples and used v2-test to detect the
abnormality hidden in the sequence. In reality, sudden
events such as solar flares, geomagnetic storms and
Rayleigh-Taylor instability breaks the stationary process.
Moreover, the main interest of such studies is the investiga-
tion of the TEC disturbances and hence the processes will
best be described if both stationarity and non-stationarity
are considered in the modeling.

We model TEC fluctuation directly by decomposing the
TEC time series into regular and irregular components
using hierarchical Bayesian inversion technique. By regular
component of the TEC, we mean the component of the
TEC that always occur at quiet condition of the iono-
sphere, such as where there is no sudden solar events and
no magnetic storms for ionospheric disturbance to occur
and by irregular component of the TEC, we mean the com-
ponent of the TEC which results in significant disturbance
in the ionosphere. Hence, we assume the periodic and trend
components of the TEC time series as regular, where as the
other fluctuation components of the TEC time series are
assumed as irregular in this study. This enables us to pro-
pose a stationary and non-stationary prior models sepa-
rately for the regular and irregular components of the
TEC measurement model respectively. Moreover, in this
study the regular and irregular variation components of
the TEC are directly estimated and quantified from GPS
data instead of characterizing them using ROT and ROTI
indices indirectly.

We use a three-layer Bayesian hierarchical model: The
first level is the data level. The second level is the process
level that describes the overall fluctuation of TEC involving
the regular and irregular variation components. These two
temporal variability determinant components of the TEC
are presented respectively, through stationary and non-
stationary Gaussian Markov random processes. The third
level contains hyperparameters for the first and second
level parameters. The posterior distributions of model
parameters and hyperparameters are derived by imple-
menting Markov Chain Monte Carlo (MCMC) techniques:
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