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Abstract

We use our semi-analytic solution of the nonlinear force-free field equation to construct three-dimensional magnetic fields that are
applicable to the solar corona and study their statistical properties for estimating the degree of braiding exhibited by these fields. We
present a new formula for calculating the winding number and compare it with the formula for the crossing number. The comparison
is shown for a toy model of two helices and for realistic cases of nonlinear force-free fields; conceptually the formulae are nearly the same
but the resulting distributions calculated for a given topology can be different. We also calculate linkages, which are useful topological
quantities that are independent measures of the contribution of magnetic braiding to the total free energy and relative helicity of the field.
Finally, we derive new analytical bounds for the free energy and relative helicity for the field configurations in terms of the linking num-
ber. These bounds will be of utility in estimating the braided energy available for nano-flares or for eruptions.
� 2017 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The temperature of the solar corona is known to be
around million degrees for decades (Grotrian, 1934;
Edlén, 1943). The average density of plasma in the corona

is very low � 108 cm�3 (Aschwanden, 2004). The energy
input required to compensate for the radiative and conduc-
tive losses and still maintain a million degree hot corona is

estimated to be 107 ergs cm2s�1 for active regions and

3� 105 ergs cm2 s�1 for the quiet regions (Withbroe and
Noyes, 1977; Klimchuk, 2006). The physical processes that
result in the heating of the corona are not well understood,
though it is believed that a key role in this is played by the
magnetic fields (Schrijver and Zwaan, 2000; Golub and
Pasachoff, 2010; Berger et al., 2015). The coronal heating

theories can be broadly divided into two categories: direct
current (DC) heating models, which are based on dissipa-
tion of magnetic stresses, and alternating current (AC)
heating models which are based dissipation of waves
(Ionson, 1985; Milano et al., 1997; Mandrini et al., 2000;
Klimchuk, 2006). In AC heating models, it is assumed that
the photospheric motion changes on a time scale faster
than what the coronal loop can adjust to (e.g., by damping
and dissipation of Alfvén waves), whereas in the DC heat-
ing models, it is assumed that the random photospheric
motions displace the footpoints of the coronal magnetic
field lines on time scales much longer than the Alfvén tran-
sit time along a coronal loop, so that the loop can adjust to
the changing boundary condition in a quasi-static way.
Both AC and DC models involve photospheric footpoint
motions which arise from the interactions of the convective
plasma flows with the magnetic flux elements (van
Ballegooijen et al., 2014).

In the case of the DC heating models, the random rota-
tions of the footpoints lead to twisting of the magnetic flux
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elements, while the random walks of these footpoints lead
to their braiding (Parker, 1979; Berger and Asgari-Targhi,
2009). In order to resist the increase in complexity, the
coronal magnetic field in the corona tries to adjust its
topology through continuous deformations. According to
Parker’s magnetostatic theorem (Parker, 1972; Parker,
1988; Parker, 1994), astrophysical plasmas with high mag-
netic Reynolds number and a complex magnetic topology
favor spontaneous generation of current sheets (resulting
from sharp gradients in the magnetic field) which leads to
recurrent magnetic reconnections (Kumar et al., 2016).
Parker (1972, 1983), Berger (1993), and Berger and
Asgari-Targhi (2009) then proposed a model which
involves heating of the solar corona through nanoflares
due to reconnection of braided magnetic flux elements.
He further estimated the heating rate in the corona arising
from the dynamical dissipation of the braided magnetic

fields to be of the order of 107 ergs cm�2 s�1 (Parker,
1983) and argued it to be the principal source of heating
in the active corona. The magnetic braiding can be charac-
terized by defining a ‘crossing number’ which can be
related to the free energy of the field (Berger, 1993). For
continuous fields without distinct flux tube structures,
some number N of individual field lines can be chosen
within a loop, and the braiding between these lines can
be quantified. Wilmot-Smith et al. (2009) presented such
a semi-analytic force-free model of a pigtail braid where
three magnetic field lines crossed each other six times.

However, in these studies, simple analytic configurations
of magnetic fields were considered that lacked the natural
complexity often observed in active regions of the Sun.
Model configurations of the coronal magnetic field that
are morphologically similar to those observed in the active
regions, while being restricted to semi-analytic axisymmet-
ric solutions of the linear and nonlinear force-free field
(NLFFF) equation were presented in Prasad and
Mangalam (2013) and Prasad et al. (2014). In Prasad
et al. (2014) (hereafter PMR14), these solutions were used
to simulate a library of photospheric vector magnetograms
templates (depending upon the choice of parameters) that
were compared with vector magnetograms observed by
the spectro-polarimeter on board HINODE. This tech-
nique is complimentary to the usual approach where the
magnetograms are used as a boundary condition for a
numerical NLFFF extrapolation (Wiegelmann and
Sakurai, 2012). The solutions are first obtained on a local
spherical shell and a planar surface is placed tangential to
the inner sphere that represents a Cartesian cutout of an
active region (see Fig. 4 of PMR14 for more details). The
orientation of the tangential plane are varied by two Euler
rotations which are free parameters. The magnetic field cal-
culated on this planar surface is then correlated with pho-
tospheric vector-magnetograms to fix the free parameters
of the solutions. The radial component of magnetic field
on the innermost shell is used to calculate the potential field
for the volume of the shell. The three dimensional (3D)
geometry of the magnetic field is used to estimate the rela-

tive helicity (Berger and Field, 1984) and the free energy
(difference in magnetic helicity and energy between the
NLFFF and the corresponding potential field) for the
entire volume of the shell. These values are then scaled with
the solid angle subtended by the magnetogram to estimate
the energetics of eruptive events like solar flares. The use-
fulness of this method is in obtaining fast and reasonably
good fits to observed vector magnetograms using semi-
analytical 3D NLFFF magnetic fields.

The rest of the paper is organized as follows. In Sec-
tion 2, we first present a description of the NLFFF solu-
tions. The characterization of the amount of magnetic
braiding for a toy model of two helices and for the various
NLFFF solutions are presented in subsections Sections 2.1
and 2.2 using topological quantities like crossing and wind-
ing numbers and their number distributions for different
modes of the NLFFF solutions are also calculated. In Sec-
tion 3, we discuss linking numbers and present estimates of
the free energy and relative helicity for the field configura-
tions, and also set bounds on their magnitude. Finally, the
summary and conclusions are presented in Section 4.

2. Calculation of crossing and winding for NLFFF solutions

The expression for the nonlinear force-free magnetic
field in spherical geometry follows from equation (36) of
PMR14 is given by
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where w ¼ ð1� l2Þ1=2F ðlÞ=rn, Q ¼ awðnþ1Þ=n, a and n are
constants and l ¼ cos h. The above equation can also be
obtained from Eq. (3) of Low and Lou (1990) by substitut-
ing for l. We can then write
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where F is obtained from
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which has to be solved numerically as an eigenvalue prob-
lem for the variable a for a given value of n. For n ¼ p=q,
where p and q are integers prime to each other and q – 0,
solutions exist for all odd values of p, while for even values
of p, it exists only if F ðlÞ > 0 in the domain �1 6 l 6 1
(PMR14). The magnetic field lines of the solutions for
n ¼ 3 and m ¼ 0� 3 (which correspond to different eigen-
values of a in Eq. (3)) are shown in Fig. 1. The plots are
shown in a Cartesian domain (following the convention
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