Accepted Manuscript

Geoeffectiveness of interplanetary shocks controlled by impact angles: A review

D.M. Oliveira, A.A. Samsonov

PII:	\$0273-1177(17)30727-5
DOI:	https://doi.org/10.1016/j.asr.2017.10.006
Reference:	JASR 13438
To appear in:	Advances in Space Research

Received Date:29 May 2017Revised Date:4 October 2017Accepted Date:5 October 2017

Please cite this article as: Oliveira, D.M., Samsonov, A.A., Geoeffectiveness of interplanetary shocks controlled by impact angles: A review, *Advances in Space Research* (2017), doi: https://doi.org/10.1016/j.asr.2017.10.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Geoeffectiveness of interplanetary shocks controlled by impact angles: A review

D. M. Oliveira^{a,b,*}, A. A. Samsonov^c

^aNASA Goddard Space Flight Center, Greenbelt, MD USA ^bGoddard Planetary Heliophysics Institute, University of Maryland Baltimore County, Baltimore, MD USA ^cSaint Petersburg State University, Saint Petersburg, Russia

Abstract

The high variability of the Sun's magnetic field is responsible for the generation of perturbations that propagate throughout the heliosphere. Such disturbances often drive interplanetary shocks in front of their leading regions. Strong shocks transfer momentum and energy into the solar wind ahead of them which in turn enhance the solar wind interaction with magnetic fields in its way. Shocks then eventually strike the Earth's magnetosphere and trigger a myriad of geomagnetic effects observed not only by spacecraft in space, but also by magnetometers on the ground. Recently, it has been revealed that shocks can show different geoeffectiveness depending closely on the angle of impact. Generally, frontal shocks are more geoeffective than inclined shocks, even if the former are comparatively weaker than the latter. This review is focused on results obtained from modeling and experimental efforts in the last 15 years. Some theoretical and observational background are also provided.

Keywords: Solar disturbances, interplanetary shocks, shock impact angle, geomagnetic activity

Contents

1	Introduction	1	
2	Early prediction and first observations of col- lisionless shocks in the solar wind	4	
3	Brief description of theoretical background	5	
	3.1 Classification of shocks	5	
	3.2 Computation of shock normals and speeds .	8	
	3.3 A note on terminologies	9	
1	Data and models	0	
4	A 1 Diama and IME data	9	
	4.1 Plasma and IMP data	9	
	4.2 Geomagnetic index data	9	
	4.3 Numerical MHD models	11	
5	Properties of shocks at 1 AU	13	
6	Modeling impacts of head-on shocks	15	
7	Asymmetric magnetospheric compression in		
-	response to impacts of inclined shocks	19	
8	Impact angle effects on geomagnetic activity	22	
	8.1 Ring current	22	
	8.2 SI ⁺ rise times and magnetic field at geosyn-		
	chronous orbit	22	

Email addresses: denny.m.deoliveira@nasa.gov (D. M. Oliveira), a.samsonov@spbu.ru (A. A. Samsonov)

	8.3	Field-aligned currents, cross-polar cap po-	
		tential, auroral precipitation	26
	8.4	Substorms	29
	8.5	Auroral power intensifications	31
9	Sun	nmary and conclusion	32
	9.1	Properties of shocks at Earth's orbit	32
	9.2	Effects on asymmetric magnetospheric re-	
		sponse	32
	9.3	Effects on geomagnetic storm intensity	33
	9.4	Effects on geomagnetic SI ⁺ rise time and	
		geosynchronous magnetic field	33
	9.5	Effects on ionospheric field-aligned currents,	
		cross-polar cap potential, and auroral pre-	
		cipitation	33
	9.6	Effects on auroral substorm activity and night-	
		side auroral power intensity	34
		- 0	

Aphistdix acronyms and abbreviations 34

1. Introduction

The Sun is the nearest star to the Earth. As a gigantic sphere of magnetized gas, the Sun is constantly active with large variations in its magnetic field. For example, based on historical and modern observations, it is well known today that the Sun presents a 22-year period of a dynamic solar cycle which corresponds to a double magnetic field reversal of its magnetic field polarity, but the time interval between two consecutive minima or maxima numbers of sunspots existing on the Sun's surface corresponds to approximately 11 years. However, these time

^{*}Corresponding author

Download English Version:

https://daneshyari.com/en/article/8132377

Download Persian Version:

https://daneshyari.com/article/8132377

Daneshyari.com