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Abstract

In this paper we find the families of relative equilibria for the three body problem in the plane, when the interaction between the
bodies is given by a quasi-homogeneous potential. The number of the relative equilibria depends on the values of the masses and on
the size of the system, measured by the moment of inertia.
� 2017 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper we study a planar three body problem
where the interaction between the bodies is given by a
potential of the form

UðrÞ ¼ A
ra

� B
rb
; ð1Þ

where r is the distance between the bodies, A;B; a and b are
positive constants. This kind of potentials are called quasi-
homogeneous because they are the sum of two functions
which are homogeneous and in this case with homogeneity
degree �a and �b. Expression (1) generalizes several very
well known quasi-homogeneous potentials as Birkhoff,
Manev, Van der Waals, Libhoff, Schwarzschild, Lennard-
Jones, the classical Newton and Coulomb and potentials
that come from exact solutions of the general relativity
equations (see Sthephani et al., 2003). In what follows
our main purpose is to give a characterization of the special
periodic solutions called relative equilibria, associated with
the famous problem of central configurations (Smale,
2000). Our main contribution is to find an algebraic proof
of the existence of relative equilibria in the following two
situations, the attractive-attractive case and the
attractive-repulsive case, which for us means that in expres-

sion (1) the components of the potential are both positive
or one positive and other negative, respectively. Specifically
we show that relative equilibria can correspond to arrange-
ments of the bodies in equilateral, isosceles and scalene tri-
angles, in function of the different values of the masses.
Also we find all the possible bifurcations in the number
of relative equilibria in a specific size of the system, i.e.,
in terms of the moment of inertia. This results generalize
those presented in Corbera et al. (2004) and Arredondo
and Perez-Chavela (2013).

This problem has been studied before in the specific con-
text by several authors, some introductory aspects can be
found in Corbera et al. (2004) for relative equilibria with
Lennard-Jones potential in the two and three body prob-
lem with equal masses. In Arredondo and Perez-Chavela
(2013) was studied relative equilibria in the three body
problem with Schwarszchild potential and arbitrary values
for the masses. The previous two works used numerical
tools to get their conclusions. In Diacu et al. (2006) the
authors provided a proof of the Moulton theorem for
quasi-homogeneous potentials in general, and in Jones
(2008) and Paraschiv (2012) the authors explored the nat-
ure of the central configurations and their relationship with
the orbits of the bodies.

This paper is organized as follows: In Section 2 we intro-
duce the equations of motion. In Section 3 we study the
planar relative equilibria for the attractive-repulsive case,
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where we show how the number of relative equilibria
depends of the size of the system and in Section 4 we extend
these results to the attractive-attractive case.

2. Equations of motion

Let us consider systems of three bodies with masses
m1;m2 and m3, moving in the Euclidean plane under the
influence of a quasihomoheneous type-potential and let

qi 2 R2 denote the position of the i-th particle in an inertial
coordinate system. For this kind of systems the generalized
quasihomogeneous potential takes the form

UðqÞ ¼
X3

i–j

AðmimjÞ
raij

�
X3

i–j

BðmimjÞ

rbij
; ð2Þ

where rij ¼ jqi � qjj, a, b are positive constants and AðmimjÞ,
BðmimjÞ are positive constants depending on the interactions

between the masses mi and mj, respectively with ði; j; kÞ per-
muting cyclically in ð1; 2; 3Þ. The equations of motion asso-
ciated to the potential (2) are

€q ¼ rUðqÞ ð3Þ
and we will assume as is usual, that the center of mass of
the three particles is fixed at the origin. Henceforth, our
goal will be the analysis of the relative equilibrium. Hence,
we determine the solutions of (3) that become equilibrium
points in an uniformly rotating coordinate system (see
Meyer et al. (2009) for details). Relative equilibria are char-
acterized as follows: Let RðxtÞ denote the 6� 6 block diag-
onal matrix with 3 blocks of size 2� 2 corresponding to the

canonical rotation in the plane. Let x 2 ðR6Þ be a configu-
ration of the 3 particles, and let qðtÞ ¼ RðxtÞx be a solu-
tion, where the constant x is the angular velocity of the
uniform rotating coordinate system. In the coordinate sys-
tem x the equation of motion (3) becomes

€xþ 2xJ _x ¼ rUðxÞ þ x2x; ð4Þ
where J is the usual symplectic matrix. A configuration x is
called central configuration for system (3) if and only if x is
an equilibrium point of system (4), i.e., if

rUðxÞ þ x2x ¼ 0; ð5Þ
for some x. If x is a central configuration, then

qðtÞ ¼ RðxtÞx ð6Þ
is a relative equilibrium solution of system (3), which is also
a periodic solution having period T ¼ 2p=jxj. Therefore,
when a central configuration is obtained, one has also the
corresponding relative equilibria, and that is why central
configurations and relative equilibria are equivalent
concepts.

Is it worth to mention, for the sake of clarity, that Eq.
(5) for a central configuration q ¼ x, says that a central
configuration in the space q is a particle configuration for

which; the position q and the acceleration €q vectors of each
particle are proportional, with the same constant of pro-
portionality x2.

3. Attractive-repulsive case

In this section we consider that the interaction between
the bodies correspond to a quasi-homogeneous potential,
with one attractive component and other repulsive. Thus
expression (2) can be written as

UðqÞ ¼
X3

i–j

AðmimjÞ
raij

�
X3

i–j

BðmimjÞ

rbij
: ð7Þ

Since in this case central configurations are not invariant
under homotheties, it is natural to think that their number
depends on the size of the system measured by the moment
of inertia I, which can be written in terms of the mutual dis-
tances as

I ¼ 1

M
ðm1m2r212 þ m1m3r213 þ m2m3r223Þ; ð8Þ

where M ¼ m1 þ m2 þ m3. For this case, the following the-
orem presents the main result.

Theorem 1. Consider the planar 3-body problem, where the

mutual interaction between the particles is given on the form

presented in (7), then,

1. If the three masses are equal, the relative equilibria can be
equilateral or isosceles triangles. The number of relative

equilibria depend on the moment of inertia, and there

are four bifurcation values for I.

2. If two masses are equal, for any value of the constants

AðmimjÞ and BðmimjÞ the relative equilibria can be isosceles

triangles, and can be equilateral and scalene triangles

for special values of this constants.
3. If the three masses are different, for any value of the con-

stants AðmimjÞ and BðmimjÞ the relative equilibria can be sca-

lene triangles, and can be equilateral and isosceles

triangles for special values of the constants.

Proof. First all, let us remember the next Lemma whose
proof appears in Corbera et al. (2004). h

Lemma 1. Let u ¼ f ðxÞ; x ¼ ðx1; . . . xnÞ, x1 ¼ g1ðyÞ; . . . ;
xn ¼ gnðyÞ with y ¼ ðy1; . . . ymÞ, m P n. If rankðAÞ ¼ n where

A ¼

@x1
@y1

� � � @xn
@yn

..

. . .
.

@x1
@ym

@xn
@ym

0
BBBBB@

1
CCCCCA;

then rf ðxÞ ¼ 0 if and only if ruðyÞ ¼ 0.
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