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a b s t r a c t 

A novel inflection-point inflation model is analysed. The model considers a massless scalar field, whose 

self-coupling’s running is stabilised by a non-renormalisable operator. The running is controlled by a 

fermion loop. We find that successful inflation is possible for a natural value of the Yukawa coupling 

y � 4 × 10 −4 . The necessary fine-tuning is only ∼10 −6 , which improves on the typical tuning of inflection- 

point inflation models, such as MSSM inflation. The model predicts a spectral index within the 1- σ bound 

of the latest CMB observations, with a very small negative running, and negligible tensors ( r ∼ 10 −(9 −10) ). 

These results are largely independent of the order of the stabilising non-renormalisable operator. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Cosmic inflation is an organic part of concordance cosmology. 

With a single stroke inflation addresses the fine-tuning problems 

of the hot big bang; namely the horizon and flatness problems and 

also produces the primordial curvature perturbation, which seeds 

structure formation and is in excellent agreement with CMB ob- 

servations [1] . According to the inflationary paradigm, the Universe 

undergoes inflation when dominated by the potential density of a 

scalar field, called the inflaton. However, the identity of the infla- 

ton is as yet unknown. 

The latest CMB observations suggest that the scalar potential 

of the inflaton features an inflationary plateau (e.g. see Ref [2] ). 

Numerous mechanisms have been put forward to generate such 

a plateau, involving exotic constructions in the context of elab- 

orate, beyond-the-standard-model theories, such as superstrings. 

One such example is inflection-point inflation, where the inflation- 

ary plateau is due to the interplay of opposing contributions in the 

scalar potential, which (almost) cancel each other out generating a 

step on the otherwise steep potential wall. The original model was 

called A-term inflation, because it employed the A-term of a super- 

symmetric theory [3,4] , or MSSM inflation, because it considered a 

flat direction in MSSM [5] as the inflaton. However, other models 

of inflection-point inflation have also been constructed [6,7] . Most 

of these also consider an elaborate setup in the context of super- 

symmetry, string theory or other extensions of the Standard Model. 
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However, an advantage of the idea of inflation is that it does 

not have to rely on exotic physics, in contrast to alternatives like 

the ekpyrotic scenario [8] or string gas cosmology [9] . Indeed, in- 

flation may be realised simply within field theory in curved space- 

time. It is also possible to achieve inflection-point inflation in this 

way. In this paper we explore such a possibility, where we exploit 

the loop corrections to the inflaton potential to generate the step- 

like plateau. This is similar to the works in Ref. [7] . However, in 

Ref. [7] the authors consider a rather complicated running of the 

inflaton self-coupling, where many particles are contributing to it. 

We consider a simpler setup. 

In previous works care was taken so that loop corrections do 

not spoil the stability of the potential [10] . In contrast, here we 

consider a model in which the Coleman–Weinberg potential is un- 

stable. Stability is recovered by introducing a Planck-suppressed ef- 

fective operator. 

We use natural units where c = h̄ = 1 and 8 πG = m 

−2 
P 

, with 

m P = 2 . 43 × 10 18 GeV being the reduced Planck mass. 

2. Coleman–Weinberg Potential 

The general expression for the 1-loop potential is given by the 

Coleman–Weinberg (CW) result [11] 

V eff = V + 

n ∑ 

i =1 

g i M 

4 
i 
(φ) 

64 π2 
ln 

(
M 

2 
i 
(φ) 

μ2 

)
, (1) 

where V is the tree-level potential, μ is the renormalisation scale 

and M i and g i are, respectively, the field dependent tree level mass 

and the number of intrinsic degrees of freedom of the particle- i 

coupled with φ. We assume a quartic tree-level potential for the 
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inflaton field 

V = λφ4 , (2) 

and that the dominant contribution in Eq. (1) is given by the 

Yukawa coupling y between φ and a Weyl fermion. 1 Therefore we 

can approximate Eq. (1) with 

V eff(φ) = 

[
λ − β ln 

(
y 2 φ2 

μ2 

)]
φ4 , (3) 

where we used Eq. (2) and β = y 4 / 32 π2 . We can improve the po- 

tential by inserting the running expression for λ. Since we as- 

sumed that the Yukawa coupling y is the dominant contribution, 

a good approximation 

2 for the RGE solution of λ is 

λ(μ) = λ(M) − 2 β log 

(
μ

M 

)
, (4) 

where M is the scale at which we impose the boundary condition 

on the running of λ. Since we are interested in studying a configu- 

ration in which the CW potential is unstable, it is natural to pick 3 

λ(M) = 0 . Using this and inserting Eq. (4) into Eq. (3) we get 

V eff(φ) = −β ln 

(
y 2 φ2 

M 

2 

)
φ4 . (5) 

3. Inflation model with inflection point 

The potential in Eq. (5) is not stable because it is unbounded 

from below. We assume that stability is ensured by the interven- 

tion of a non-renormalisable Planck-suppressed effective operator. 

Therefore let us consider the following inflaton potential 

V = −β ln 

(
y 2 φ2 

M 

2 

)
φ4 + λn 

φ2 n +4 

m 

2 n 
P 

, (6) 

where the first term is the 1-loop effective potential obtained in 

Eq. (5) and the second term is an effective non-renormalisable op- 

erator, with λn � 1 and n ≥ 1. We consider only the dominant non- 

renormalisable term, of order n . 

For the moment we choose n = 1 but later on we consider 

higher values of n . For simplicity, we study the model where 

y 2 

M 

2 
= 

1 

m 

2 
P 

. (7) 

If y < 1 (required for pertubativity), it is possible to realise such a 

condition with sub-Planckian M . 

A priori , M and y can take whatever possible value. However it 

is possible to reduce the parameters space, identifying a preferred 

region which is essentially described by Eq. (7) . For example, as- 

suming that our inflaton is not the Higgs boson of the SM, it is 

reasonable to expect new physics to happen around the scale of 

grand unification (GUT-scale). Therefore it is reasonable to consider 

M ∼ 10 15 −16 GeV. In addition to that, the Yukawa coupling, y , gen- 

erating the loop correction must be small enough to preserve per- 

turbativity, but on the other side, also big enough to give rise to 

1 A similar computation can be performed also in the case of more fermionic 

degrees of freedom. However, since here we are not discussing the details of the 

fermion sector phenomenology, but just its contribution to the effective potential, 

we limit ourselves to the minimal setup. 
2 There is also a RGE for y to be solved. In a minimal setup in which the Weyl 

fermion is only coupled to φ, the beta function for such a coupling would behave 

as βy ≈ y 3 . If y � 1, then the running of y becomes negligible and y can be safely 

treated as a constant. 
3 The choice is just a convenient parameterisation. Even if we would assume 

λ( M ) � = 0, we can always find a new scale M 

∗ = M exp ( λ(M) 
2 β

) at which λ(M 

∗) = 0 . 

Therefore the computations would then proceed in the same way from Eq. (5) with 

simply M 

∗ in place of M . 

relevant corrections. Therefore a reasonable range for y is 4 around 

10 −(2 −3) . Combining the two expected regions for M and y , we get 

that y / M is around 1/ m P , therefore for the first analysis, in which 

we present a new idea for inflection point models, it is enough to 

study the model implementing Eq. (7) . We will consider a broader 

range of M and y values in a future article. 

Noting that the slow-roll formalism is independent of the po- 

tential normalisation, we reparameterise the potential as 

V = β

[
− ln 

(
φ2 

m 

2 
P 

)
φ4 + α

φ6 

m 

2 
P 

]
, (8) 

where α = λ1 /β . Such a potential has a flat inflection point at 

φ f = e 1 / 4 m P and α f ≡
2 

3 

√ 

e 
. (9) 

To study the inflationary predictions for values of α around αf , we 

parameterise: 

α = (1 + δ) α f (10) 

and use δ as a free parameter. Varying δ allows us to find the range 

of allowed slopes of the plateau around the flat inflection point. In- 

creasing δ increases the slope of the plateau. Decreasing δ to neg- 

ative values introduces a local maximum. 

There are two aspects to consider when constraining δ. First, by 

contrasting the computed inflationary observables with the obser- 

vations. Second, by ensuring that the necessary remaining e-folds 

of inflation since the cosmological scales exited the horizon, N 

∗ , is 

not greater than the total e-folds of inflation, N tot . When the pa- 

rameter space for δ is established we calculate predictions for the 

inflationary observables, namely the spectral index of the scalar 

curvature perturbations, n s , its running, n ′ s ≡ dn s 
d ln k 

and the tensor- 

to-scalar ratio, r . 

3.1. Computing N 

∗

First we must make clear the distinction between N tot and N 

∗ . 

N tot depends mainly on the initial conditions of the inflaton. We 

set the beginning of inflation to be determined by ε = 1 , where 

ε = − ˙ H /H 

2 is the usual slow-roll parameter. For the e-folds of 

observable inflation N 

∗ , typically the reheating temperature has a 

large impact. However, our model does not need an in-depth in- 

vestigation into reheating since in this model, after inflation, the 

field oscillates in a quartic minimum because of Eq. (2) and also 

lim 

φ→ 0 

[
−β ln 

(
φ2 

m 

2 
P 

)
φ4 

]
= 

1 

2 

βφ4 . (11) 

The average density of a scalar field coherently oscillating in a 

quartic potential scales as ρφ ∝ a −4 [12] , just as the density of a 

radiation dominated Universe. Hence, there is little distinction in 

the expansion between inflaton oscillations and radiation domina- 

tion after reheating, which means that N 

∗ is independent of the 

inflaton decay rate. 

In this case we have 

N ∗ = 62 . 8 − ln 

(
k 

a 0 H 0 

)
+ 

1 

3 

ln 

(
g ∗

106 . 75 

)
+ 

1 

3 

ln 

( V 

1 / 4 

end 

10 

16 GeV 

)
(12) 

where k = 0 . 05 Mpc −1 is the pivot scale, (a 0 H 0 ) 
−1 is the comoving 

Hubble radius today, g ∗ is the effective number of relativistic de- 

grees of freedom and V end ≡ V ( φend ), with ‘end’ denoting the end 

of inflation. This simplifies when we take g ∗ = 106 . 75 , correspond- 

ing to the standard model at high energies. Inputting the values of 

k and a 0 H 0 as well, gives 

N ∗ = 57 . 4 + 

1 

3 

ln 

( V 

1 / 4 

end 

10 

16 GeV 

)
. (13) 

4 Indeed, we find y = 4 × 10 −4 (see conclusions), which is not that far from the 

expected range. 
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