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a b s t r a c t 

The cosmic ray energy distributions contain spectral features, that is narrow energy regions where the 

slope of the spectrum changes rapidly. The identification and study of these features is of great impor- 

tance to understand the astrophysical mechanisms of acceleration and propagation that form the spectra. 

In first approximation a spectral feature is often described as a discontinuous change in slope, however 

very valuable information is also contained in its width, that is the length of the energy interval where 

the change in spectral index develops. In this work we discuss the best way to define and parameterize 

the width a spectral feature, and for illustration discuss some of the most prominent known structures. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The spectra of cosmic rays (CR) extend to a very broad energy 

range with a smooth shape that, for energy E � 30 GeV, is usually 

described as an ensemble of adjacent energy intervals, where the 

energy distribution is a simple power law ( φ(E) � K E −α ), sepa- 

rated by “spectral features”, that is narrow regions where the slope 

(or spectral index) of the flux undergoes a rapid change. The fea- 

tures can be softenings or hardenings of the spectrum, and appear 

as “knee–like” or “ankle–like” in the usual log–log graphic repre- 

sentation of the spectrum. Prominent and well known examples 

of features in the all particle spectrum are in fact the “Knee” at 

E � 3 PeV, and the “Ankle” at E � 4 EeV. 

The simple description outlined above is an approximation, be- 

cause it is likely that the CR spectra are not, even in a limited 

range of energy, exactly of power law form, and the spectral in- 

dices are always slowly evolving with energy; however the identi- 

fication and study of discrete spectral features can be considered 

as a natural and useful task. 

It is obviously very desirable, and in fact ultimately necessary, 

to describe the CR spectral features in the framework of astrophys- 

ically motivated models, and in terms of parameters that have a 

real physical meaning, and in the literature there are several al- 

ternative models to interpret the observations. On the other hand, 

it is useful to have a purely phenomenological description of the 

shape of the spectral features, as an intermediate step that can be 

used as a guide in the construction of astrophysical models. 

In first order approximation, a spectral feature can be described 

as infinitely narrow, with the spectral index that changes discon- 

tinuously. In this limit a feature it is completely described by four 
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parameters: E b the break energy, that gives its position, α1 and α2 

the spectral slopes before and after the break, and the absolute 

normalization of the flux. 

It is obvious that the hypothesis of a discontinuous change in 

spectral slope is unphysical, and this suggests that a phenomeno- 

logical description of a spectral feature should include at least one 

additional parameter. A simple and convenient parameterization of 

the spectral shape of the CR all particle spectrum in the region 

of the Knee has been introduced by Ter–Antonyan and Haroyan 

[1] and later adopted by Schatz [2] and also used by the HESS col- 

laboration [3] to describe the spectrum of electrons plus positrons. 

This parameterization can be applied to the description of both 

softening and hardening spectral features and (with E 0 is an ar- 

bitrary reference energy) has the form: 

φ(E) = K 0 

(
E 

E 0 

)−α1 
[

1 + 

(
E 

E b 

) 1 
w 

]−(α2 −α1 ) w 

(1) 

that contains one additional parameter, the width w > 0 (note 

that the authors of [1,2] use the parameter ε = 1 /w ). It can be 

observed that the two sets of parameters { K, E b , α, α′ , w } and 

{ K 

′ , E b , α′ , α, −w } (with K 

′ = K (E 0 /E b ) 
(α−α′ ) ) generate identical 

curves. Imposing the constraint w > 0 eliminates this ambiguity, 

selecting the solution where the parameters α1, 2 are equal to the 

asymptotic spectral indices for low and high energy. 

Some examples of the spectral shapes of this parameterization 

are shown in Fig. 1 . For a more precise understanding of the “geo- 

metrical meaning” of w it is useful to consider the energy depen- 

dence of the spectral index of a flux described by Eq. (1) : 

α(E) ≡ −d ln φ

d ln E 
= α + 

�α

2 

tanh 

[
ln (E/E b ) 

2 w 

]
. (2) 
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Fig. 1. Example of a (softening) spectral feature described by the parameterization 

of Eq. (1) . The spectral indices before and after the break are α1 = 2 . 7 and α2 = 3 . 1 . 

The different curves are calculated as the limit for w → 0 , and with w = 0 . 1 , 0.3 

and 0.5. 

Fig. 2. Energy dependence of the spectral index (see Eq. (2) ). The three curves cor- 

respond to three values of the width parameter ( w = 0 . 1 , 0.3 and 0.5). 

In this equation α = (α2 + α1 ) / 2 is the average of the two spec- 

tral indices before and after the break, and �α = (α2 − α1 ) is the 

total change in spectral index across the break (some numerical 

examples are shown in Fig. 2 ). It is straightforward to see that w 

gives the width of interval in log E where the step in spectral index 

develops. 

The limit for w → 0 of Eq. (1) is a broken power law with spec- 

tral index α1 for E < E b , and α2 for E > E b , and the same limit for 

Eq. (2) yields: 

lim 

w → 0 
α(E) = 

{ 

α − �α
2 

= α1 for E < E b 

α + 

�α
2 

= α2 for E > E b 

(3) 

and corresponds to a discontinuous jump of the spectral index. 

More in general, one has that the asymptotic values (for E → 0 and 

E → ∞ ) of the spectral index are α1 and α2 , and at the break en- 

ergy E b the spectral index takes the average value: α(E b ) = α . The 

step in spectral index �α develops symmetrically in log E , and the 

energies E f ± where the spectral index takes the values: 

α(E f ± ) = α ± �α

2 

f (4) 

(with 0 ≤ f < 1) are given by: 

log E f ± = log E b ± w log 

[
1 + f 

1 − f 

]
, (5) 

so that the two values log E f ± are placed symmetrically with re- 

spect to log E b . The total range of log E (centered on log E b ) where 

the spectral index varies by �α/2 is then: 

(� log 10 E) �α/ 2 = ( log 10 9) w � 0 . 954 w. (6) 

This allows to attribute a simple and easy to remember physical 

meaning to w . The value w � 1 corresponds to a spectral feature 

that develops in approximately a decade of energy, and a feature 

of width w � 0 . 1 has an energy extension that is approximately a 

factor ≈ 10 0.1 � 1.25. 

The width w is also related to the derivative of the spectral 

index at the break energy by the simple relation: 

dα(E) 

d ln E 

∣∣∣∣
E= E b 

= 

�α

4 w 

. (7) 

Recently the AMS02 collaboration has presented fits to the 

rigidity spectra of the proton an helium spectra [12,13] using the 

functional form (expressed here as a function of energy): 

φ(E) = K 

(
E 

E 0 

)−α1 
[

1 + 

(
E 

E b 

)−(α2 −α1 ) /s 
]s 

. (8) 

Eqs. (1) and (8) are in fact different parameterizations of the same 

ensemble of curves. The parameter s used in Eq. (8) is related to 

the width w of Eq. (1) by: 

s = −(α2 − α1 ) w (9) 

and therefore Eqs. (1) and (8) are equivalent. The parameterization 

used by the AMS02 collaboration suffers from the same ambiguity 

present for the form of Eq. (1) , because (with an appropriate modi- 

fication of the normalization factor) the two sets of parameters { α, 

α′ , s } and { α′ , α, −s } correspond to identical curves. The choice of 

the set where the quantities α1, 2 are the asymptotic spectral in- 

dices of the curve for low and high energy, corresponds to the set 

of parameters with s > 0 if the spectral feature is a hardening, and 

the set with s < 0 if the spectral feature is a softening. 

Even if the two parameterizations of Eqs. (1) and (8) are math- 

ematically equivalent, we find that the use of the width parame- 

ter w is preferable because of its more transparent and intuitive 

physical meaning. In addition, when performing fits to data, the 

quantities in the pair { s , �α} are in general much more strongly 

correlated than the quantities in the pair { w, �α}. 

As discussed above, the spectral index of a flux described by 

Eq. (1) or (8) is symmetric in log E . It is potentially interesting to 

have a more flexible functional form to describe a spectral feature 

that allows for the possibility that the spectral index changes more 

rapidly before or after the break energy. A simple generalization 

of Eq. (1) that depends on one more parameter, can be obtained, 

keeping for E b the same definition, that is the energy where the 

spectral index takes the average value: 

α(E b ) = 

(α1 + α2 ) 

2 

(10) 

and introducing two different widths to the left and right of the 

break energy. This results in the form: 

φ(E) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

K 0 

(
E 
E 0 

)−α1 

[ 
1 + 

(
E 
E b 

) 1 
w L 

] −�α w L 

for E < E b 

K 0 2 

�α (w R −w L ) 
(

E 
E 0 

)−α1 

[ 
1 + 

(
E 
E b 

) 1 
w R 

] −�α w R 

for E > E b , 

(11) 

so that the spectral index α( E ) takes the form: 

α(E) = 

{ 

α + 

�α
2 

tanh 

[
ln (E/E b ) 

2 w L 

]
for E < E b 

α + 

�α
2 

tanh 

[
ln (E/E b ) 

2 w R 

]
for E > E b . 

(12) 

For this parameterization the flux and its first derivative (i.e. the 

spectral index) are continuous, but the second derivative is discon- 

tinuous at the point E = E b . Taking the derivative of the spectral 
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