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a b s t r a c t

Density effects in ionized matter require particular attention since they modify energies, wavefunctions
and transition rates with respect to the isolated-ion situation. The approach chosen in this paper is based
on the ion-sphere model involving a Thomas-Fermi-like description for free electrons, the bound elec-
trons being described by a full quantum mechanical formalism. This permits to deal with plasmas out of
thermal local equilibrium, assuming only a Maxwell distribution for free electrons. For H-like ions, such a
theory provides simple and rather accurate analytical approximations for the potential created by free
electrons. Emphasis is put on the plasma potential rather than on the electron density, since the energies
and wavefunctions depend directly on this potential. Beyond the uniform electron gas model, temper-
ature effects may be analyzed. In the case of H-like ions, this formalism provides analytical perturbative
expressions for the energies, wavefunctions and transition rates. Explicit expressions are given in the
case of maximum orbital quantum number, and compare satisfactorily with results from a direct inte-
gration of the radial Schr€odinger equation. Some formulas for lower orbital quantum numbers are also
proposed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Since the first studies in a stellar atmosphere context [1], the
analysis of density effects in ionized matter has attracted consid-
erable attention. This interest has been revived recently by the
availability of lineshift measurements in dense plasma emission
[2,3]. The description of such effects is complex since it implies the
elaboration of a quantum theory of a very large system. Setting
aside the molecular dynamics approaches (e.g., Ref. [4]), as stated
by several authors [5,6], the various approaches used to describe
these phenomena may be categorized as ion-correlation and ion-
sphere models. Such approaches are usually qualified as density-
functional theories. On the one hand, ion-correlation theories
consider the plasma as an infinite polarizable medium, with
asymptotic cancellation of free-electron and ion densities. The
Debye-Hückel theory may be considered as a high-temperature
limit of this formalism, which has been since developed by
various authors [6e10]. On the other hand, ion-sphere [11,12]
theories assume that environment effects arise from an appro-
priate description of the free-electron density, with no account for

correlations in ion positions. Following Liberman [11], the ion-
sphere theories assume that the Wigner sphere is globally
neutral. Beyond the Wigner radius, the free-electron density is
canceled by the other-ion density while inside the Wigner sphere,
this density is obtained through various hypotheses, e.g., through
a self-consistent approach such as Thomas-Fermi (TF). Such
models have been widely used to get energies and transition rates
for ions in a plasma as, e.g., in Refs. [13,14], and their infinite-
temperature limit is the well-known uniform electron gas model
(UEGM) [15].

When dealing with environment effects in plasmas, a compro-
mise must be found between the accuracy and/or internal consis-
tency of the model, and its tractability. For instance describing
plasmas out of local thermodynamic equilibrium requires the
computation of a very large set of energies, transition probabilities
and collisional cross-sections. A widely used plasma model,
belonging to the ion-sphere category, is the uniform electron gas
model that assumes constant electron density inside the Wigner
sphere and cancellation of free-electron and other ion density
outside it. It allows one to get very simple analytical energies for H-
like ions. And recently, we have also shown that analytical per-
turbed wavefunctions and transition rates may be obtained [16].
However, this appears as an infinite temperature limit, since theE-mail address: michel.poirier@cea.fr.
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polarization of the electron density by the ion is not accounted for.
A more realistic model, accounting for this polarization, is the
Thomas-Fermi approximation for free electrons. In its standard
form, this semi-classical theory also accounts for the Pauli principle.
However this theory remains purely numerical, making, e.g.,
analytical computations not possible. In this work, we intend to
show that simple analytical approximations can be found for this
potential, at the same time keeping the accuracy of the description
d not too different from Thomas-Fermi description d and its
tractability since it relies on a polynomial from of the potential.

A preliminary account of the method for obtaining an analytical
plasma potential has been already published [17]. We present first
the details for the derivation of the analytical approximation, and
then focus on some applications in hydrogen-like ions. In particular,
we provide analytical expressions for energies, wavefunctions and
dipole matrix elements for the higher values of the orbital quantum
number.

2. Analytical approximation for the plasma potential

The present formalism relies on a Thomas-Fermi analysis of the
electron density, that has beenwidely used to describe warm dense
matter [12,13,18,19]. More precisely, we derive a semi-classical self-
consistent density for free electrons, while bound electrons are
treated in a full quantum-mechanical way. A similar hypothesis is
assumed in several works, e.g., in models for density effects in H-
like ions [13] or in the CASSANDRA average-atom theory [20].
Furthermore we have shown previously [17] that the use of Fermi-
Dirac statistics is usually not required for not too low temperatures
and moderate densities.

2.1. Method

Contrary to what has been mostly done elsewhere (see, e.g.,
Ref. [14]), we focus here the attention on approximate analytical
expressions for the plasma potential Vpl(r) d linked to the local
free-electron density through Poisson equation d and not for the
free-electron density ne(r). The reason for that is two-fold. First, the
physical quantities such as wavefunctions, energies, rate co-
efficients and collision cross-sections directly depend on the po-
tential and not on the density. Second, it turned out that simple and
accurate polynomial approximations are available for the radial
dependence of the potential, while the free-electron density has a
non-rational r�1/2 behavior close to the nucleus that would require
a less convenient non-polynomial fit formula.

The procedure chosen to obtain an analytical form of the plasma
potential whatever the plasma temperature Te, spatially averaged
free-electron density Ne, and average free-electron number per ion
Zf involves a three-step numerical fit, each step being individually
usable to provide a polynomial approximation.

In the first step, the reduced plasma potential
v
ð1Þ
pl ðrÞ ¼ R0V

ð1Þ
pl ðrÞ=Zf d in Ref. [17] we have shown that this

quantity obeys simpler scaling laws than V ð1Þ
pl ðrÞd is fit to the form

v
ð1Þ
pl ðrÞ ¼ 2� r=R0 þ

Xnc

i¼1

aið1Þð1� r=R0Þiþ1 (2.1)

where R0 is the Wigner radius defined by 4pR30=3Ne ¼ Zf . Atomic
units are used throughout, unless explicitly mentioned. Here the
coefficients ai(1) are numerically computed by least-square pro-
cedure, and depend on atomic potential, plasma temperature Te
and free-electron average density Ne. Whatever the number nc of fit
coefficients, this expression ensures that the potential is contin-
uous at r¼ R0 and that the electric field has the correct value on the

Wigner-sphere surface dV=drðR0Þ ¼ �Zf =R20, in agreement with
Gauss theorem and electric neutrality condition.

It turns out that the value nc ¼ 3 provides a good compromise
between accuracy of the fit and simplicity of the analytical
expression. Furthermore, we have shown analytically in hydrogen-
like ions [17] that the first correction to the infinite-temperature
limit involves indeed a three-coefficient polynomial. As can be
proved using scaling properties [17], the coefficients ai(1) obtained
in this first step are not independent functions of Ne and Te but of
the dimensionless parameter

r ¼ R1=R0 ¼ Zf
pkTeR0

(2.2)

hereafter referred as the “coupling parameter”, though it differs by
a factor 1/Zfp from the usual one [15]. They are also functions of the
average ionization Zf and of the potential created by the nucleus
and the bound electrons. In the hydrogen-like case Zf¼ Z�1, Z being
the nucleus charge, these coefficients depend simply on r and on Zf/
Z.

As a second step of the fitting procedure, the high-Te analytical
development provided by Eq. (15b) of Ref. [17] and a direct in-
spection of the numerical results presented in Appendix A suggests
that these elements are correctly represented by a harmonic form

ajð2Þ ¼ �dj1

2
þ r

Mjrþ Pj
(2.3)

where dij is the Kronecker symbol. The Mj coefficients are deter-
mined by linear regression, looking at the dependence of

r=

�
aj þ dj1

2

�
versus r. The Pj coefficients might be derived from this

linear regression. However, it appeared that the numerical accuracy
obtained on the Pj coefficient by this method was very poor, that is
why we decided to derive these coefficients from the low-density
or high-temperature form. Therefore, as mentioned in our previ-
ous work [17], we have chosen nc ¼ 3 and

P1 ¼ 10=3p

5Z
.
2Zf � 1

; P2 ¼ 10
3p

; P3 ¼ �40
3p

: (2.4)

Examples of fit are given in Table 1 for several elements ranging
from helium (Zf ¼ 1), to thallium (Zf ¼ 80).

As a third step, one may give an analytical form fitting the co-
efficients Mj themselves as function of Z/Zf. Once again a series of
tests lead us to state that a harmonic dependence

Mj ¼
AjZf þ Bj
CjZf þ 1

(2.5)

provides an acceptable estimate of the numerically derived Mj co-
efficients. The atomic number Z is implicit in this formula since one
only deals here with hydrogenic ions for which Z ¼ Zfþ1. These

Table 1
Coefficient for fitting the plasma potential in various H-like elements. The co-
efficientsMj define the temperature and density dependence of the plasma potential
according to Eqs. (2.1), (2.3). The uncertainty DMj is derived from the performed
linear regression.

Element Zf M1 DM1 M2 DM2 M3 DM3

He 1 3.45091 7 � 10�5 6.44652 2 � 10�4 �4.9386 6 � 10�4

Al 12 1.66693 2 � 10�4 2.34249 6 � 10�5 �1.9564 5 � 10�4

Mn 24 1.37079 2 � 10�4 1.97192 5 � 10�5 �1.6218 5 � 10�4

In 48 1.16900 2 � 10�4 1.70423 8 � 10�5 �1.3907 2 � 10�4

Tl 80 1.06480 4 � 10�4 1.54493 8 � 10�4 �1.2628 4 � 10�4
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