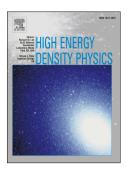
Accepted Manuscript

The effect of first order superconfiguration energies on the opacity of hot dense matter

Menahem Krief, Alexander Feigel

PII: \$1574-1818(15)00036-1

DOI: 10.1016/j.hedp.2015.04.003


Reference: HEDP 527

To appear in: High Energy Density Physics

Received Date: 10 March 2015
Revised Date: 14 April 2015
Accepted Date: 14 April 2015

Please cite this article as: M. Krief, A. Feigel, The effect of first order superconfiguration energies on the opacity of hot dense matter, High Energy Density Physics (2015), doi: 10.1016/j.hedp.2015.04.003.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Menahem Krief^a, Alexander Feigel^b

^aThe Racah Institute of Physics, The Hebrew University, 91904 Jerusalem, Israel ^bSoreq NRC, Yavne 81800, Israel

Abstract

We have recently completed developing a new super transition array (STA) [1, 2, 3, 4, 5, 6, 7] code for calculating absorption and emission spectra of LTE plasmas. The code follows the theory of Bar-Shalom et al. with various improvements. In this work we focus on the first order correction for the Boltzmann populations for which traditional calculations can be very costly. We present here a method faster by and order of magnitude than the traditional method. We then investigate the effect of this correction on the opacity spectra of several elements. Finally we interpret results of a recent opacity experiment on gold plasma. A good agreement is reached.

Keywords:

opacity, gold opacity, unresolved transition array, super transition array, configuration average energy, first order superconfiguration average energy

1. Introduction

In hot dense plasmas of intermediate or high-Z elements in the state of local thermodynamic equilibrium (LTE), the number of electronic configurations contributing to the opacity can be enormous [8, 9, 10] and the methods of detailed levels [11, 12, 13, 14] and detailed configuration accounting [15, 16, 17, 18, 19] becomes computationally intractable. The method of super-transition-array [1, 2, 3, 4, 5, 6, 7, 20, 21, 22] is a powerful technique to

Email addresses: menahem.krief@mail.huji.ac.il (Menahem Krief), sasha@soreq.gov.il (Alexander Feigel)

Download English Version:

https://daneshyari.com/en/article/8133547

Download Persian Version:

https://daneshyari.com/article/8133547

<u>Daneshyari.com</u>