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The radiative opacity of a plasma is a key parameter in understanding a diverse range of high energy
density systems including inertial confinement fusion and astrophysics. The accurate calculation of
opacity is hampered by the potentially enormous number of ionic configurations, the detailed internal
structure of each giving rise to the term structure, and the line broadening models which must typically
be applicable across densities from 10~ g/cc to several times solid.

The DAVROS opacity code (Detailed Accounting of Various configurations for Radiative Opacity
Spectra) has been developed at AWE over recent years, and by making use of the large scale High Per-
formance Computing (HPC) systems, implements a number of models and algorithms aimed at a more
direct calculation of opacities than has traditionally been feasible. The results are both more physically
based and spectrally accurate than codes based upon statistical accounting approximations. In particular,
the bound—bound line spectrum can be explicitly calculated using the Detailed Term Accounting (DTA)
method, which, although computationally expensive, is necessary to understand the true frequency
dependent structure of the opacity spectrum. Additionally, M. Baranger (1958) [1] quantum mechanical
formulism of pressure (or electron impact) broadening is implemented, thereby representing a signifi-
cant improvement upon alternative approximations.

We present a summary of some of the key issues, models and algorithms in the code, and show some
representative results, including comparisons with opacity measurements made at AWE.

Crown Copyright © 2015 Published by Elsevier B.V. All rights reserved.

1. Overview

The interaction of radiation with a plasma is central to under-
standing high energy density physics (HEDP) systems. A key
parameter for practicable radiation transport calculations is the
Rosseland mean opacity
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where «(v) is the monochromatic opacity computed at a photon
energy v and u=v/kT. Unfortunately, kg can be sensitive to the
detailed structure of the spectrum. An example of this is shown in
Table 1 for Ni calculated using the DAVROS code at a temperature of
30 eV and a density of 0.003 g/cc. In this example, the density is
sufficiently low that line broadening is weak and the individual
spectral lines resulting from a detailed term accounting (DTA)
treatment remain separated. On the other ahnd, using the unre-
solved transition array (UTA) approximation, this gives a rather
poor estimate of «g y74 = 7283.6 cm?/g as compared to the DTA
value of kg pra = 4850.4 cm?/g.

One of the more established AWE codes used to calculate the
radiative opacity of materials is the CASSANDRA code [2] which
uses statistical techniques based upon an average-atom model and
itis fundamentally a UTA code. In recent years, with the availability
of large scale high-performance computer (HPC) systems, the
DAVROS opacity code has been developed to perform more direct
calculations based upon the relatively straight-forward, but
computationally expensive, methods of detailed configuration ac-
counting (DCA) and detailed term accounting (DTA). At the DCA
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Table 1

Example for spectator configuration accounting in Fe. As an increasing number of
spectator electrons are added (first column) the number of possible configurations
grows rapidly in a combinatorial manner. However the contribution to the total
partition function decreases rapidly and thus the contribution to the low energy
photon region of the opacity spectrum can be well represented by a much smaller
number of configurations. The recursive algorithm used to estimate spectator
configuration energies (and hence related properties) encapsulated by eq. (11) is key
to iterating this vast number of configurations efficiently.

# Configs total # Configs spectrum P.F. Total P.F. Spect.
1 375,063 375,063 5.4749 5.4749
2 7,501,260 7,434,269 2.5178 2.5174
3 102,440,284 4,791,785 0.7771 03517
4 1,073,430,306 0 0.1810 0.0000
5 9,197,217,950 0 0.0391 0.0000
6 67,064,034,096 0 0.0053 0.0000
Tot 77,444,998,959 12,601,117 8.9901 8.3441

level, one typically calculates the properties of specific real con-
figurations which are expected to be representative of the plasma,
but retains the approximation that the spectral lines are approxi-
mated by the UTA model. Extending the computation to explicitly
include the detailed line structure due to each configuration gives
rise to the DTA method (sometimes referred to as detailed level
accounting (DLA)).

It should be appreciated that the number of distinct ion con-
figurations within a plasma may be extremely large. It is only with
the recent development of large scale HPC systems that direct
atomic physics calculations of realistic numbers of configurations
that are representative of systems of interest have become feasible.
The DAVROS code has been developed from scratch to make use of
these new resources efficiently. Having the advantage of being an
entirely new code, it has enabled us to use a number of novel
techniques to directly compute the opacity spectrum in more detail
than has traditionally been practicable. This paper gives a brief
summary of some of the key principles and methods used in
DAVROS. A small number of representative results are also
illustrated.

2. Code Description
2.1. Configuration accounting

2.1.1. Core configurations

We begin with an average atom calculation which is used to
identify which electronic shells are either closed (fully occupied) or
open. We then initially estimate the energies of all possible (nl)
configurations with occupied orbitals having a maximum value of n
such that we exclude all shells that do not have any nl sub-shells
with an occupancy probability p; = gi/gi<0.01 — with g; and g; be-
ing the electron occupancy and statistical weight of the i sub-
shell. For example if the n=2 shell is opened, we may also see
that the average atom predicts appreciable fractions of electrons in
the n = 3 and n =4 shells, but negligible occupancies in higher sub-
shells (The inclusion of these in an approximate manner is dis-
cussed later). An estimate of the energies of these configurations is
given by a Taylor series expansion from the average atom [3].
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where E™f is the energy of the reference configuration — here the
average atom — and the summations run over the occupied sub-
shells j,k with occupancies of gjx electrons. The partial derivatives
are determined from the average atom by straight forward nu-
merical differentiation.

The probability of the i configuration is then estimated via the
Saha—Boltzmann equations

pi = wi/llg (3)
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where u is the plasma chemical potential and Z? is the number of
bound electrons in the configuration.

The resulting list of configurations is then sorted by descending
order of probability and from hereafter only the top .7  configura-
tions are retained such that the majority of the partition function,
II, is represented to within some tolerance 7

A
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where 7 represents the Yth most probable in the sorted list. These
remaining configurations will be referred to as core configurations.

Each core configuration is then split into all possible underlying
relativistic (nlj) configurations. This enables the code to subse-
quently calculate spectra in either the JJ or intermediate coupling
representations depending upon the atomic number/degree of
ionisation. Each of these core (nlj) configurations then has an in-
dividual atomic structure calculation performed in a unique self-
consistent-field (SCF) using a Dirac-Hartree-Slater (DHS) type of
potential. The potential in each case includes a contribution from
the Thomas-Fermi distribution of free electrons from the bulk
plasma as estimated from the average atom calculation. In this way
the effect of the plasma, e.g. wavefunction distortion and contin-
uum lowering, is explicitly included in the subsequent determi-
nation of the atomic properties.

The quality of the atomic structure, (e.g. as measured by tran-
sition energies), can be significantly improved by using an indi-
vidual potential for each sub-shell j such that self-interaction
arising from other electrons in the j™ sub-shell is explicitly
excluded [4]. DAVROS thus uses the DHS potential
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with

i) = pree(r) + 3 (ai = 350) (PE(r) + Q2(n) (8)

where P and Q are the large and small components of the Dirac
wave functions and Vi is the exchange and correlation potential
[5]. The use of a different potential for each occupied sub-shell
results in non-orthogonal wave functions. The effect is generally
small but is easily corrected with an inexpensive Gram-Schmidt
orthogonalisation within the SCF loop.

The major computational expense involved in the SCF calcula-
tions is due to the evaluation of the Coulomb potential in eq. (8) The



Download English Version:

https://daneshyari.com/en/article/8133573

Download Persian Version:

https://daneshyari.com/article/8133573

Daneshyari.com


https://daneshyari.com/en/article/8133573
https://daneshyari.com/article/8133573
https://daneshyari.com

