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a b s t r a c t

The general theory of the scattering of electromagnetic radiation in atomic plasmas and metals, in the
non-relativistic regime, in which account is taken of the KramerseHeisenberg polarization terms in the
Hamiltonian, is described from a quantum mechanical viewpoint. As well as deriving the general formula
for the double differential Thomson scattering cross section in an isotropic finite temperature multi-
component system, this work also considers closely related phenomena such as absorption, refraction,
Raman scattering, resonant (Rayleigh) scattering and Bragg scattering, and derives many essential re-
lationships between these quantities. In particular, the work introduces the concept of scattering
strength and the strength-density field which replaces the normal particle density field in the standard
treatment of scattering by a collection of similar particles and it is the decomposition of the strength-
density correlation function into more familiar-looking components that leads to the final result. Com-
parisons are made with previous work, in particular that of Chihara [1].
© 2014 Crown Owned Copyright/AWE PLC. Published by Elsevier B.V. This is an open access article under

the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).

1. Introduction

Thomson scattering is the scattering of electromagnetic radia-
tion by electrons in matter, in the non-relativistic or near-
relativistic regime. Two key features of Thomson scattering are
that it is sensitive to correlations between electrons and that the
polarization of the scattered radiation is entirely determined by the
initial polarization and the scattering geometry. This is unlike
Compton scattering, which is incoherent scattering by individual
electrons and which contains a polarization-independent contri-
bution. Nevertheless Compton and Thomson scattering are de-
scriptions of the same phenomenon to the extent that incoherent
Thomson scattering and Compton scattering are interchangeable
descriptions of scattering by effectively free and uncorrelated non-
relativistic electrons. In matter, electrons are correlated via their
mutual interactions, collective motions, exchange and degeneracy,
and interactions with other particles (ions). These correlations are
directly probed by X-ray Thomson scattering (XRTS) measure-
ments, making the technique an important emerging diagnostic
tool for studying the equation-of-state properties of cold and warm
dense matter [2e8]. Understanding these correlation effects allows
quantities such as temperature and density to be deduced directly

from measurements. A baseline description of Thomson scattering
from ideal plasmas is provided by the Random Phase Approxima-
tion (RPA) which ignores short-range correlations between elec-
trons, with only large-scale collective motion taken into account.
For dense plasmas and plasmas in which bound electrons
contribute to the scattering, a more general treatment is required
both to provide more accurate modelling and to be able to extract
meaningful information from scattering measurements.

Coherent X-ray Thomson back-scattering is also a potentially
useful spectroscopic tool for carrying out material assays as the
cross-sections depend strongly on atomic spectra as well as being
amplified by an underlying proportionality of the cross-sections to
the square of the number of bound electrons.

This report presents a quantum mechanical derivation of the
general Thomson differential scattering cross-section for scattering
of electromagnetic radiation in a fully or partially ionised plasma
comprising one or more nuclear species. The work generalizes the
work of Chihara [1] who applies a fundamentally classical approach
to a two component system comprising electrons and ions. While
the current method and the results yielded have clear parallels to
the earlier work, they provide a different perspective while incor-
porating a proper quantal treatment of the electrons as well as a
more consistent treatment of the polarization terms in the inter-
action. A second-quantized approach is used to treat the electrons
thus including the effects of antisymmetry and the Pauli principle
from the outset. However a classical approach is maintained for the
nuclear ions, as is justified by their large masses and extremely
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short deBroglie wavelengths. The new work is generally important
for extending existing detailed methodologies for treating Thom-
son scattering by warm dense matter, e.g. Ref. [9], to heavier
elements.

This work also generalizes our previous work [10] which in-
troduces, in the context of a simplified form of the Hamiltonian, the
basic quantum mechanical approach employed here.

At a fundamental level, the scattering process is represented by
the non-relativistic Hamiltonian

H ¼ 1
2me

p� eAð Þ2 þHfield þ… ¼ H0 þH0 þHfield (1)

where me, e and p are respectively the mass, charge and canonical
momentum of the electron, A is the electromagnetic vector po-
tential of the incident (probe) radiation and Hfield is the Hamilto-
nian for the in vacuo electromagnetic field, which comprises the
probe radiation and any ambient radiation field. The electron in-
teracts with the field through the perturbation,

H0 ¼ e
me

ðp$A þ A$pÞ þ e2

2me
A2 (2)

which comprises two terms, the first of which is the Kra-
merseHeisenberg (KH) polarization, which represents absorption
and emission of photons by the electron, while the second is the
quiver energy. The quiver motion gives rise to point scattering in
the first order (Born) approximation and tends to dominate the
scattering of high energy photons in the non-relativistic regime,
while the KH part gives rise to scattering only in second order via
transition operators of the form A$pGA$p in which the propagator
G represents an intermediate virtual state of the electron. Although
the two scattering processes occur in different orders of pertur-
bation theory, they are of the same order in the electromagnetic
coupling constant and therefore must be considered together. It is
noteworthy that the A2 term does not arise in the linearized Dirac
Hamiltonian and so is not treated as a separate term in a fully
relativistic QED theory of Compton scattering. The fully relativistic
formulations of the theory are discussed elsewhere [10e12].

For transverse waves, [p,A]¼p,A � A,p ¼ 0 and a second-
quantized representation of the electromagnetic field experi-
enced by an electron at position r, in terms of photon (boson)
creation and annihilation field operators, bk;e; by

k;e, is represented
in terms of the Hermitian operator A ¼ ~A þ ~A

y
where [10]

~AðrÞ¼
X
k;e

�iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vε0u

p eeik,rbk;e;
~A
yðrÞ¼

X
k;e

iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vε0u

p ee�ik,rby
k;e

(3)

where k and e are respectively the wavenumber and direction of
polarization (e,e¼ 1, e,k¼ 0) of the photonmodes present, u¼ k c
is the frequency, V is the volume and ε0 is the permittivity of free
space. The operators ~A and ~A

y
therefore represent the absorption

and emission of a photon respectively while the terms in the
transition operator representing scattering are those involving the
operator pairs ~A

y
; ~A, in either order.

2. Scattering by a single electron: the Kramers, Heisenberg,
Waller formula

In lowest-order perturbation theory, without making any other
approximations, the above yields the differential cross-section for
the angular distribution of scattering of photons, from the channel
e,k into the channel e0,k0 , by a single electron initially in the state b,
according to the formula

ds
dU0 ¼ r2e

X
a

u0

u

� �2��〈a��F e;k; z; e0;k0; z0; Eb
� ���b〉��2 1þ nk0 � dkk0

� �
(4)

where re ¼ e2/4p ε0mec
2 is the classical electron radius,

z ¼ uþ i0þ
z0 ¼ u0 þ i0þ
Eb þ u ¼ Ea þ u0

(5)

F e;k; e0;k0; z; z0; E
� � ¼ � 1

me
e�ik0

$re0$pG E þ zð Þe$peik$r
�

þeik$re$pG E � z0ð Þe0$pe�ik0
$rÞ

�e�ik0
$re0$eeik$r (6)

GðEÞ ¼ ðE �H0Þ�1 (7)

a denotes an electron state in the final channel, and the factor ð1þ
nk0 � dkk0 Þ accounts for the effect of stimulated scattering in the
presence of nk0 � dkk0 spectator photons in the exit channel. Eqs.
(4)e(7) constitute the Kramers, Heisenberg, Waller formula [11].

3. Scattering from a many-electron system

3.1. Effective photon scattering operator

Our previous work [10] describes a general quantum-
mechanical treatment of Thomson scattering, but considers only
the A2 term in the Hamiltonian, which corresponds to the right-
most term on the right-hand side of Eq. (6). In the present work,
we generalize this to include the remaining polarization term in the
case of a system of electrons that is initially isotropic and unpo-
larized. In order to simplify the ensuing formalism, it is convenient
to carry out the average over the directions of the electron motions
at this stage. The scattering depends on the average of an expres-
sion like jaðe0$pÞðe$pÞ þ bðe0$eÞj2, where a and b are constant co-
efficients, over the direction of the vector p. Expanding and
applying the average yields

jaðe0$pÞðe$pÞ þ bðe0$eÞj2 ¼ jaj2ðe0$pÞ2ðe$pÞ2

þ �a*bþ b*a
�ðe0$eÞðe0$pÞðe$pÞ

þ jbj2ðe0$eÞ2

(8)
where the average is defined as XðpÞ ¼ ð4pÞ�1R XðpÞdUp.

and

ðe0$pÞðe$pÞ ¼ 1
3
p2ðe0$eÞ

ðe0$pÞ2ðe$pÞ2 ¼ 1
9
p4ðe0$eÞ2

(9)

Hence

jaðe0$pÞðe$pÞ þ bðe0$eÞj2 ¼
�
1
9
jaj2p4 þ 1

3
�
a*bþ b*a

�
p2 þ jbj2

�
� ðe0$eÞ2

¼
����13 ap2 þ b

����2ðe0$eÞ2
¼ japsps þ bj2ðe0$eÞ2

(10)
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