Accepted Manuscript

Compositional studies of Mare Moscoviense: New perspectives from Chandrayaan-1 VIS-NIR data

Megha Bhatt, Christian Wöhler, Deepak Dhingra, Guneshwar Thangjam, Daniela Rommel, Urs Mall, Anil Bhardwaj, Arne Grumpe

PII: S0019-1035(17)30413-X DOI: 10.1016/j.icarus.2017.10.009

Reference: YICAR 12644

To appear in: Icarus

Received date: 26 May 2017

Revised date: 22 September 2017 Accepted date: 11 October 2017

Please cite this article as: Megha Bhatt, Christian Wöhler, Deepak Dhingra, Guneshwar Thangjam, Daniela Rommel, Urs Mall, Anil Bhardwaj, Arne Grumpe, Compositional studies of Mare Moscoviense: New perspectives from Chandrayaan-1 VIS-NIR data, *Icarus* (2017), doi: 10.1016/j.icarus.2017.10.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Highlights

- Our spectral and elemental abundance estimation analysis suggest that
 the basin floor of the Moscoviense basin is composed of four basalt
 units.
- We re-classified the previously mapped Iltm unit from northern region as a separate basalt unit and named it as Ivltm based on its lower TiO2 content compared to the unit Iltm.
- The unit Ivltm is compositionally intermediate between the units Im and Iltm and consistent with a high-Al basalt composition.
- Several new regions with OOS lithologies along the peak ring of the Moscoviense basin identified suggesting wider spread of OOS lithologies.

Download English Version:

https://daneshyari.com/en/article/8134431

Download Persian Version:

https://daneshyari.com/article/8134431

<u>Daneshyari.com</u>