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a b s t r a c t 

SHERMAN, a new thermophysical modeling package designed for analyzing near-infrared spectra of aster- 

oids and other solid bodies, is presented. The model’s features, the methods it uses to solve for surface 

and subsurface temperatures, and the synthetic data it outputs are described. A set of validation tests 

demonstrates that SHERMAN produces accurate output in a variety of special cases for which correct 

results can be derived from theory. These cases include a family of solutions to the heat equation for 

which thermal inertia can have any value and thermophysical properties can vary with depth and with 

temperature. An appendix describes a new approximation method for estimating surface temperatures 

within spherical-section craters, more suitable for modeling infrared beaming at short wavelengths than 

the standard method. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Measuring and analyzing thermal emission is an important 

means of characterizing solid bodies in the solar system. For ex- 

ample, one can compare an asteroid’s brightness in scattered visi- 

ble light vs. emitted infrared light to estimate the object’s diame- 

ter and albedo. It may also be possible to determine the asteroid’s 

thermal inertia, with a low value implying porous regolith and a 

high value indicating exposed bedrock. Disk-resolved observations 

of the Moon have even permitted investigators to constrain sub- 

surface density variations and the relative importance of conduc- 

tive vs. radiative heat transport ( Vasavada et al., 2012; Hayne et al., 

2017 ). 

Many thermal observations, especially those produced by 

spacecraft-based infrared surveys, are of objects about which lit- 

tle is known, and thus simple thermal models that make major 

assumptions – a spherical target, equatorial illumination, instan- 

taneous equilibrium between insolation and emission – may be 

the best that one can do. But some targets have well-constrained 

shapes and spin states, for example if they have been analyzed via 
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radar or via lightcurve inversion. Thus there is a need for more so- 

phisticated thermophysical models that can take this information 

into account, explicitly modeling heat flow into and out of each 

surface element as the target rotates and orbits the Sun. 

In the past dozen years a number of new thermophysical mod- 

els, in addition to ours, have appeared in the literature ( Delbo, 

20 04; Mueller, 20 07; Statler, 20 09; Leyrat et al., 2011; Rozitis and 

Green, 2011; Nugent, 2013; Emery et al., 2014; Hanuš et al., 2015 ; 

for a review see Delbo et al., 2015 ). These models are generally 

based on the work of Spencer (1990) , and especially on the ex- 

tensive theoretical treatment of Lagerros (1996a,b, 1997 , 1998) , in 

which Lagerros goes into detail about the physics of various effects 

that determine just how much thermal radiation an asteroid will 

emit at different wavelengths. These model codes explicitly include 

subsurface heat conduction, and in many cases can model infrared 

beaming, for example by placing an ensemble of spherical-section 

craters on the surface. But even these more complex models tend 

to include some simplifying assumptions, such as Lambertian op- 

tical scattering, graybody reflectance, uniform surface properties, 

and depth- and temperature-independent thermophysical proper- 

ties. 
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In the following sections we describe SHERMAN 

1 , a shape- 

based thermophysical model that uses the shape, spin, and or- 

bital characteristics of near-Earth asteroids (NEAs) in order to ex- 

plore their thermal properties. SHERMAN can waive any or all of 

the simplifying assumptions listed above, making it both pow- 

erful and flexible. The program is based on the radar fitting 

code SHAPE, written by Hudson (1994) and further enhanced by 

Magri et al. (2007 , 2011) . It was designed for modeling disk- 

integrated spectra in the 1–5 μm region but can handle data, in ei- 

ther absolute or relative flux units, covering any wavelength range. 

Section 2 presents the equations solved by SHERMAN and re- 

casts them in terms of dimensionless variables. Section 3 outlines 

the numerical methods that the program uses to achieve a valid 

temperature solution at all times over the entire surface, and lists 

the forms of output produced for comparison with actual data. 

Section 4 then describes a number of tests used to validate SHER- 

MAN for special cases where the correct results can be derived 

from theory. Section 5 concludes the paper with a brief discus- 

sion. A companion paper ( Howell et al., 2017 ) demonstrates SHER- 

MAN’s capabilities by using it to analyze a contact binary NEA, 

8567 (1996 HW1), for which thermal spectra and optical photom- 

etry are combined with an existing shape/spin model based on 

radar and lightcurve observations ( Magri et al., 2011 ). 

2. Equations and variables 

Given a model with an arbitrary shape, realized (approximated) 

as a polyhedral solid comprised of triangular facets, SHERMAN 

solves the one-dimensional heat equation for each facet to obtain 

temperature as a function of time and of depth: 

∂T 

∂t 
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ρc 
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∂z 

(
κ

∂T 
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)
(1) 

where t is time, z is depth, T is temperature, ρ is density, c is spe- 

cific heat, and κ is thermal conductivity. We allow ρ to vary with 

depth and c to vary with temperature. We treat κ as the sum of 

a solid component and a radiative component, each of which can 

vary with both depth and temperature (with the radiative compo- 

nent always varying as T 3 ). The user actually specifies ρ , c , and 

thermal inertia � ≡ √ 

ρ c κ rather than ρ , c , and κ . 

SHERMAN solves the heat equation over a user-specified time 

interval that typically covers 10–20 rotations, long enough that 

the model can “forget” the initial conditions. The user inputs 

the model’s spin state and photometric properties and provides 

ephemerides for the target and the Sun, so that SHERMAN can 

work out each facet’s insolation (see Section 3.2.1 ) and viewing ge- 

ometry as time progresses. There are no restrictions on the spin 

state; for example, non-principal-axis rotation is allowed. All pho- 

tometric and thermal properties are permitted to vary across the 

surface. 

The boundary condition at the model’s maximum depth z max 

is 

−
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where F is the upward secular heat flux due to internal (“geother- 

mal”) processes. The boundary condition at the surface is 

ε σ T 4 
0 −

(
κ

∂T 

∂z 

)∣∣∣∣
z=0 

= S (3) 

where T 0 is surface temperature, ε is IR emissivity, σ is the 

Stefan–Boltzmann constant, and S is insolation. For a model with 

concavities, S includes not only absorbed sunlight but also ab- 

1 Not an acronym, but fondly recalling Mr. Peabody’s able assistant (Jay Ward 

Productions) 

sorbed thermal radiation (mutual heating) if the user chooses to 

model the latter effect. 

We now switch to dimensionless variables, doing so separately 

for each facet if the model’s properties vary from facet to facet. 

Such variables have typical values of order unity, thus reducing 

problems involving finite numerical precision (e.g., underflow and 

overflow). They also are more directly tied to the underlying ther- 

mal physics: for example, the temperature changes occurring dur- 

ing a given time interval depend on the ratio of that interval to the 

rotation period. 

First we compute the mean absorbed optical flux at normal in- 

cidence, 〈 S opt , ⊥ 〉 , averaged over time in case the Sun-target dis- 

tance varies. From this we obtain subsolar temperature T ss by 

equating 

〈 S opt , ⊥ 〉 = ε σ T 4 ss (4) 

Next we normalize density by dividing by surface density ρ0 . 

We normalize specific heat by dividing by c ss , its value when 

T = T ss . We normalize thermal conductivity by dividing by κ0, ss , 

its value at the surface when T = T ss . For notational convenience 

we will continue to use symbols ρ , c , and κ for the dimensionless 

versions of these quantities. 

Dimensionless time τ is t multiplied by angular rotation fre- 

quency ω. Dimensionless depth ζ is z / Z where thermal skin depth 

Z is evaluated at the surface for T = T ss : 

Z = 

√ 

κ0 ,ss 

ρ0 c ss ω 

(5) 

Dimensionless temperature u is T / T ss . Dimensionless insolation 

s and dimensionless upward secular heat flux f are obtained by 

dividing S and F , respectively, by ε σ T 4 ss . 

We now can rewrite the heat equation (1) and boundary con- 

ditions (2) and (3) using dimensionless variables: 
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where we assume that ζmax � 1 . Here u 0 is normalized surface 

temperature, whereas dimensionless thermal parameter � is a 

constant defined as 

� ≡ �0 ,ss 

√ 

ω 

ε σ T 3 ss 

(9) 

where �0, ss is the thermal inertia at the surface for T = T ss . The 

larger � is, the more effectively heat conduction moderates sur- 

face temperatures. For instance, Howell et al. (2017) find a best-fit 

thermal inertia of 70 J m 

−2 K 

−1 s −1 / 2 for 8567 (1996 HW1) (here- 

after referred to as HW1), from which it follows that �∼ 0.4: this 

value, somewhat below unity, implies that the influence of heat 

conduction is noticeable but not large. 

The following sections assume normalized variables unless ex- 

plicitly stated otherwise. 

3. Numerical methods 

3.1. Discretization 

SHERMAN uses discrete time steps and depth layers to solve 

the heat equation via finite differencing. The typical time step cor- 

responds to a quarter-degree of rotation. The numerical trunca- 

tion error is first-order in this time increment when the explicit or 
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