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a b s t r a c t 

The internal gravity and self-gravitational energy of a comet, asteroid, or small moon have applications to 

their geophysics, including their formation, evolution, cratering, and disruption, the stresses and strains 

inside such objects, sample return, eventual asteroid mining, and planetary defense strategies for po- 

tentially hazardous objects. This paper describes the relation of an object’s self-energy to its collisional 

disruption energy, and shows how to determine an object’s self-energy from its internal gravitational 

potential. 

Any solid object can be approximated to any desired accuracy by a polyhedron of sufficient complex- 

ity. An analytic formula is known for the gravitational potential of any homogeneous polyhedron, but it 

is widely believed that this formula applies only on the surface or outside of the object. Here we show 

instead that this formula applies equally well inside the object. 

We have used these formulae to develop a numerical code which evaluates the self-energy of any 

homogeneous polyhedron, along with the gravitational potential and attraction both inside and outside 

of the object, as well as the slope of its surface. Then we use our code to find the internal, external, and 

surface gravitational fields of the Platonic solids, asteroid (216) Kleopatra, and comet 67P/Churyumov–

Gerasimenko, as well as their surface slopes and their self-gravitational energies. We also present simple 

spherical, ellipsoidal, cuboidal, and duplex models of Kleopatra and comet 67P, and show how to gener- 

alize our methods to inhomogeneous objects and magnetic fields. 

At present, only the self-energies of spheres, ellipsoids, and cuboids (boxes) are known analytically (or 

semi-analytically). The Supplementary Material contours the central potential and self-energy of homo- 

geneous ellipsoids and cuboids of all aspect ratios, and also analytically the self-gravitational energy of a 

“duplex” consisting of two coupled spheres. The duplex is a good model for “contact binary” comets and 

asteroids; in fact, most comets seem to be bilobate, and might be described better as “dirty snowmen”

than as “dirty snowballs”. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

The internal gravity and self-gravitational energy of a mass 

distribution have applications to various problems in our Solar sys- 

tem, as well as to galactic and stellar dynamics. In the present con- 

text, the main applications are to the geophysics of solid objects 

such as comets, asteroids, planetesimals, small moons, etc. , includ- 

ing their formation, evolution, cratering, and disruption (whether 

collisional, rotational, or tidal); the stresses and strains inside such 

objects (whether modeled analytically, as by Dobrovolskis (1990) , 

semi-analytically, as by Dobrovolskis (1982) , or numerically with 

Finite Element Modeling, as by Hirabayashi and Scheeres (2014) ; 

sample return; eventual asteroid mining; and planetary defense 
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strategies for potentially hazardous comets and asteroids. The 

main purposes of this paper are to relate the collisional disruption 

of objects such as comets and asteroids to their self-gravitational 

energy, and to demonstrate how to compute this self-energy. 

The next section describes the collisional disruption of comets 

and asteroids, and the various terms in the impact energy budget, 

introducing gravitational “form factors” and an “energy rebate” for 

removal of only half their mass. Section 3 reviews the gravitational 

potential � and self-energy E G of arbitrary mass distributions, 

spheres, ellipsoids, and polyhedra, and sets new analytic bounds 

on E G . Section 4 describes our numerical methods for evaluating 

�, E G , gravitational attraction, and surface slope for arbitrary 

homogeneous polyhedra. Section 5 applies these techniques 

to a homogeneous model of asteroid (216) Kleopatra, while 

Section 6 does the same for comet 67P/Churyumov–Gerasimenko. 

Section 7 generalizes our method to non-homogeneous polyhe- 
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dra, and Section 8 summarizes our results. Finally, the Appendix 

tabulates the symbols used in this paper. 

For the reader’s convenience, the Supplementary Material 

includes explicit formulae for the second spacial derivatives of 

the gravitational potential (gravity gradient, or tidal tensor) of 

homogeneous polyhedra, and related formulae for the magnetic 

field and magnetic energy of uniformly magnetized polyhedra; 

provides detailed descriptions of the internal, external, and surface 

gravitational fields of homogeneous Platonic solids; and depicts 

the surface gravitational fields of homogeneous models for asteroid 

(216) Kleopatra and comet 67P/Churyumov–Gerasimenko. 

In addition, the Supplementary Material reviews the grav- 

itation of homogeneous ellipsoids and cuboids (rectangular 

parallelepipeds, or “box” shapes), simplifying certain classic results 

and deriving some new ones; and also plots the central poten- 

tial, self-gravitational energy, and form factors for ellipsoids and 

cuboids of all aspect ratios. To date, these (or their degenerate 

cases, such as spheres or straight rods) are the only objects 

whose self-gravitational energy is known analytically (or semi- 

analytically). However, these are not always satisfactory models 

for the shapes of comets, asteroids, or satellites. 

The Supplement also derives the self-gravitational energy 

of a “duplex” composed of two spheres; the gravitational field, 

moments of inertia, and various other properties of such duplexes 

were derived previously by Dobrovolskis and Korycansky (2013) . 

Duplexes are more appropriate models for bilobate objects - those 

consisting of two parts stuck together in a “contact binary” resem- 

bling a peanut or a snowman. Many comets (such as 1P/Halley 

and 67P/Churyumov–Gerasimenko), asteroids (such as 216 Kleopa- 

tra and 25143 Itokawa), and possibly satellites (such as Pluto’s 

small moon Kerberos; see Weaver and 50 co-authors (2016) are 

bilobate. In fact, 5 of the 7 well-resolved comets are bilobate (see 

Hirabayashi and 8 co-authors, 2016 ; the exceptions are 9P/Tempel 

1 and 81P/Wild 2, which look more like potatoes). Thus most 

comets might be described better as “dirty snowmen” than as 

“dirty snowballs” ( Whipple, 1950 ). 

2. Collisional disruption 

The impact disruption energy E D of a comet or asteroid is 

defined as the minimum kinetic energy input needed both to 

shatter the object and to remove at least half of its mass (Davis 

et al. , 1977, see also Benz and Asphaug, 1999 , and Asphaug et al., 

2002 ). This disruption energy can be regarded as the sum of two 

terms; Formula (1) of Asphaug et al. (2002) , derived ultimately 

from Fujiwara et al. (1977) by way of Davis et al. (1979) , can be 

re-written as 

E D = E S + E B /e ∗, (1) 

where E S is the shattering energy of the object, and E B is its 

binding energy. The dimensionless coefficient e ∗ may be regarded 

as an efficiency factor, because impacts transfer only a fraction e ∗

of their kinetic energy directly into the binding energy E B of the 

target; note that 0 < e ∗ < 1. 

2.1. Shattering 

The shattering energy E S is the energy input needed just to 

shatter the object into many small pieces. In this context, the 

meaning of “many” and “small” depends on circumstances. For 

example, to shatter a contact binary composed of two identical 

spheres tangent from outside, it suffices to break the two lobes 

apart at their connection point. Many comets and asteroids may 

have no significant shattering energy, because they have been 

shattered already by non-disruptive impacts, or because they 

are accretional “rubble piles” of boulders and gravel with no 

significant cohesion. 

Most asteroids smaller than ∼ 75 meters in radius rotate with 

spin periods of less than two hours, so they must have tensile 

strengths on the order of 0.02 MPa = 0.2 bars or more just to 

hold themselves together ( Pravec et al., 2002 ); for comparison, the 

meteoroid which hit Chelyabinsk had a compressive strength on 

the order of 0.20 Mpa = 2 bars ( Popova and 58 co-authors, 2013 ). 

Some of these rapidly spinning small asteroids may be solid, 

monolithic bodies; for these, the shattering energy E S depends on 

the size, shape, strength, density, and porosity of the object. 

Simple models suggest that the shattering energy E S of a solid 

body should be proportional to its mass M (see Asphaug et al., 

2002 ). Thus it is common to define an object’s specific shat- 

tering energy Q S ≡ E S / M as its shattering energy divided by its 

mass. Analogous definitions apply to its specific binding energy 

Q B ≡ E B / M , and to its specific disruption energy Q D ≡ E D / M . Thus 

formula (1) is equivalent to 

Q D = Q S + Q B /e ∗. (2) 

Note that Q D is usually called Q 

∗
D 

in the literature; and that the 

various specific energies Q ≡ E / M all have dimensions of speed 

squared, and are not to be confused with the dimensionless 

“quality factor” Q conventionally used to parameterize damping of 

tides and of non-principal axis rotation. 

Naïvely, the specific shattering energy Q S should be indepen- 

dent of size, all else being equal. However, more sophisticated 

reasoning reveals that Q S should decrease with increasing size of 

the object, based on the “weakest link” effect. As a measure of 

size, we define the volumetric radius (henceforth mean radius) 

R̄ of an object as the radius of a sphere with the same mass M , 

volume V , and macroscopic density ρ = M/V as the object: 

R̄ ≡
(

3 V 

4 π

)1 / 3 

≈ 0 . 62035049 (M/ρ) 1 / 3 . (3) 

Then several arguments suggest that Q S should scale roughly as 

the inverse square root of R̄ ( Asphaug et al., 2002 ). 

2.2. Binding energy 

An impact of energy E S presumably shatters an object; but 

in order to disperse its mass, the object’s gravitational binding 

energy E B must be overcome as well. In this paper, we express E B 
itself as the sum of three terms: 1 

E B = E G − E 2 − E ω , (4) 

where E G is the self-gravitational energy (or just self-energy) of 

the object, which is the energy it would take to disperse its entire 

mass to infinity; E 2 is an energy “rebate”, which we introduce as 

a correction term for breaking the body in two rather than into 

smithereens; and E ω is the object’s kinetic energy of rotation. 

Analogously, we express the specific binding energy Q B ≡ E B / M 

in terms of the specific self-energy Q G ≡ E G / M , the specific energy 

rebate Q 2 ≡ E 2 / M , and the specific spin energy Q ω ≡ E ω / M : 

Q B = Q G − Q 2 − Q ω . (5) 

1 In order permanently to destroy a moon of mass M orbiting a planet of mass 

M P at a semi-major axis s , the dispersed fragments must escape from the pri- 

mary as well, lest they re-accrete into a second-generation satellite; see footnote 

10 of Greenstreet et al. (2015) . Then the binding energy contains a fourth term: 

E B = E G − E 2 − E ω + E O , where E O = 

1 
2 

GM P M/s is the satellite’s orbital energy. Like- 

wise, Eq. (5) becomes Q B = Q G − Q 2 − Q ω + Q O , where we define a moon’s specific 

orbital energy Q O ≡ E O /M = 

1 
2 

GM P /s . Note that Q O is independent of the satellite’s 

mass M , its mean radius R̄ , and its other physical properties, while Q G , Q 2 , and Q ω 
all scale as M/ ̄R . For a homogeneous spherical moon of radius R, Q O and E O are 

actually greater than Q G and E G when 5 R / s > 6 M / M P . 
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