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a b s t r a c t 

Previous models that attempted to explain the formation of the pronounced oblate shape of Iapetus sug- 

gested that it was a preserved rotational bulge. These models found that heating was provided by short- 

lived radioactive isotopes that decayed rapidly and allowed the excess flattening of the lithosphere to be 

locked in by a thickening lithosphere, but placed severe timing constraints on the formation of Iapetus 

and its bulge. Here, we show that finite element simulations with an elastic-viscous-plastic rheology indi- 

cate it is possible to form the bulge through long-wavelength folding of the lithosphere of Iapetus during 

an epoch of contraction combined with a latitudinal surface temperature gradient. In contrast to models 

of a frozen rotational bulge, heat generated by long-lived radioactive isotopes warms the interior, which 

causes porosity loss and forces Iapetus to compact by ∼10%. Our simulations are most successful when 

there is a 30 K temperature difference between the pole and the equator. Tectonic growth of the bulge is 

not sensitive to the time scale over which the moon contracts, and lithospheric thickness primarily con- 

trols whether a fold can form, not fold wavelength. In addition, long term simulations show that when 

no stress is applied, the mechanical lithosphere is strong enough to support the bulge, with negligible 

relaxation over billion year time scales. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

The distinctly oblate shape (and peerless equatorial ridge) on 

Saturn’s moon Iapetus is unique in our solar system ( Porco et al., 

2005; Thomas et al., 2007 ) ( Fig. 1 ). The shape of Iapetus is best 

fit by an oblate spheroid where the difference between equato- 

rial radius and polar radius is 35.0 ± 3.7 km ( Thomas et al., 2007; 

Castillo-Rogez et al., 2007 ), yielding an ∼4.5% flattening of the 

moon. (For comparison, the Earth’s flattening is ∼0.5%, an order 

of magnitude less.) This flattening has generally been attributed to 

a frozen-in shape from an epoch with a more rapid rotation rate 

(e.g., Thomas et al., 2007; Castillo-Rogez et al., 2007 ), because the 

observed figure of Iapetus is consistent with a body in hydrostatic 

equilibrium with a spin period of ∼16 h, different from the current 

spin period of 79.33 days ( Castillo-Rogez et al., 2007 ). 

Researchers have sought to understand how the lithosphere of 

Iapetus could fossilize and preserve an ancient rotational bulge 

( Castillo-Rogez et al., 2007; Robuchon et al., 2010 ). These coupled 

thermal, orbital, and mechanical models showed that an initially 

porous satellite would need to have accreted within ∼5 Myr of for- 
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mation of the solar system. This finding is based on the available 

short-lived radioactive isotopes (SLRI) that are present in compo- 

sitional models ( Castillo-Rogez et al., 2007 ), and was the only sit- 

uation revealed by these models in which there was tidal despin- 

ning of the satellite but a lithosphere sufficiently thick to freeze in 

the bulge after loss of rotational support. However, a satellite with 

the same high initial porosity but with only long-lived radioactive 

isotopes (LLRI), while still slowing down rotationally, possessed a 

lithosphere too thin and weak to support the bulge. These results 

thus suggested that there are severe timing constraints on the for- 

mation Iapetus and the stabilization the its surface. 

These effort s, however, hinge on the assumption that the bulge 

is a remnant rotational structure. Could it instead have a tec- 

tonic origin, thereby bypassing these severe timing constraints that 

the SLRI place upon the formation of the bulge? As modeled by 

Castillo-Rogez et al. (2007) and Robuchon et al. (2010) , heating by 

the LLRIs 40 K, 232 Th, 235 U, and 

238 U would have warmed the inte- 

rior of Iapetus and led to the loss of initial porosity, which in turn 

would have driven the entire icy lithosphere to deform to account 

for the loss of internal volume. Previous work by Sandwell and 

Schubert (2010) applied a buckling model of a uniform elastic 

shell and found that for shell thicknesses larger than 120 km, 

the preferred wavelength of buckling is at spherical harmonic de- 

gree 2, a buckling mode consistent with an oblate spheroid. Thus, 
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Fig. 1. Saturn’s moon Iapetus, with its distinctly oblate spheroidal shape and 

prominent ridge. (Courtesy NASA/JPL-Caltech PIA06166). 

axisymmetric degree-2 buckling could explain the currently ob- 

served flattening. The problem with the proposed elastic buck- 

ling model is that stresses required to buckle the lithosphere are 

far greater than the strength of the lithosphere – ∼280 MPa vs. 

∼12 MPa ( Sandwell and Schubert, 2010 ). This stress paradox is a 

common shortcoming of elastic buckling models of lithospheres 

(e.g., Turcotte and Schubert, 2014 ). 

In this paper, we propose an alternative hypothesis: by sim- 

ulating a variation in lithospheric thickness due to a pole-to- 

equator surface temperature during an epoch of planetary con- 

traction while invoking a more realistic rheology (elastic-viscous- 

plastic vs. elastic), it is possible to reproduce tectonically the ob- 

served shape of Iapetus through folding of the lithosphere. Folding 

is the process by which layer parallel compression of mechanically 

competent layers can be accommodated, and has been well studied 

(e.g., Schmalholz and Mancktelow, 2016 , and references therein). In 

general, thinner lithospheres result in shorter folding wavelengths. 

Folding also requires a perturbation in order the break the lat- 

eral homogeneity (otherwise, the layers would just get uniformly 

thicker). We show here that a large hemispherical perturbation 

from the surface temperature variation strongly biases the fold- 

ing wavelength. Thus, this alternative formation mechanism of the 

bulge might make it possible to remove the severe time constraints 

that the rotational bulge models require. 

2. Methods 

We simulate the unstable deformation of a lithosphere, using 

an approach applicable for both long- and short-wavelength situa- 

tions (e.g., Kay and Dombard, 2017a,b ). For this project, we use the 

Marc finite element package ( http://www.mscsoftware.com ), which 

solves for force or thermal balance using standard numerical tech- 

niques. Marc has been well-vetted in the study of the thermal and 

mechanical properties of the lithospheres of icy satellites and rocky 

planets (e.g., Dombard and McKinnon, 20 0 0, 20 01, 20 06a,b; Dom- 

bard et al., 2007; Dombard and Cheng, 2008; Damptz and Dom- 

bard, 2011 ; Karimi et al., 2016). The code employs a composite 

rheology that describes the general behavior of geologic materials: 

Fig. 2. Example compressional yield envelope for Iapetus’ lithosphere. For this 

model, T s is 90 K, the strain rate is 10 −12 s −1 , and a conductivity of 651/ T . 

elastic on short time scales and viscous on long time scales, with 

brittle failure (continuum plasticity) for high enough stresses. 

Thus, we use a rheological model more consistent with ob- 

served deformational behavior of geologic materials, utilizing con- 

stitutive relations for elastic, viscous, and plastic (e.g., Gammon 

et al., 1983; Beeman et al., 1988; Goldsby and Kohlsedt, 2001 ) be- 

havior linked in series (i.e., a Maxwell viscoelastic solid extended 

to include a plastic component): 

εtotal = εelastic + εv iscous + εplastic (1) 

where ε is strain. 

For this type of composite rheology, the mechanical behavior 

can be explored with a Yield Strength Envelope (YSE), which is de- 

fined as the strength of the material under planetary conditions 

(i.e., temperature and pressure increasing with depth) and sub- 

jected to uniform, planar, horizontal contraction (or extension) at 

a constant rate ( Fig. 2 ). 

Two primary regimes are seen (e.g., Fig. 2 in Dombard and 

McKinnon, 2006a,b ): 1) a shallow zone where strength is con- 

trolled by the brittle, frictional strength of the material (modeled 

here as continuum plasticity) and 2) a deeper zone in which duc- 

tile creep limits the strength, with the Brittle Ductile Transition 

(BDT) separating the two (e.g., Dombard and McKinnon, 2006a,b , 

and references therein). Within the envelope, deformation is ac- 

commodated elastically. The brittle regime is assumed to have a 

strength that increases linearly with depth (i.e., pressure), follow- 

ing a “Byerlee’s rule” for cold ice (Beeman et al., 1998). This region 

is defined by a frictional slip criterion with finite cohesion and is 

largely independent of temperature and strain rate. For low confin- 

ing stresses, experimental data have shown two relationships, one 

with finite cohesion and one with zero cohesion: 

τ = 0 . 55 σn + 1 . 0 MPa (2) 

τ = 0 . 69 σn (3) 

where, τ is the shear stress required for slip and σ n is the normal 

stress (Beeman et al., 1998). While these shear failure criteria are 

both consistent with the experimental data, we use Eq. (2) to pre- 

clude strengthless material in our numerical approach. The code 

employs Drucker–Prager plasticity, which is a simplified version of 
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