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a b s t r a c t 

We propose a semianalytical method to compute the strengths on each of the three massive bodies par- 

ticipating in a three body mean motion resonance (3BR). Applying this method we explore the depen- 

dence of the strength on the masses, the orbital parameters and the order of the resonance and we 

compare with previous studies. We confirm that for low eccentricity low inclination orbits zero order 

resonances are the strongest ones; but for excited orbits higher order 3BRs become also dynamically rel- 

evant. By means of numerical integrations and the construction of dynamical maps we check some of the 

predictions of the method. We numerically explore the possibility of a planetary system to be trapped in 

a 3BR due to a migrating scenario. Our results suggest that capture in a chain of two body resonances is 

more probable than a capture in a pure 3BR. When a system is locked in a 3BR and one of the planets 

is forced to migrate the other two can react migrating in different directions. We exemplify studying the 

case of the Galilean satellites where we show the relevance of the different resonances acting on the 

three innermost satellites. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

One of the most prevalent dynamical phenomena observed in 

planetary systems is orbital commensurability, or resonance. Two 

body resonances (2BRs), extensively studied in orbital dynamics, 

occur when the ratio between the mean motions, n , of two bodies 

can be written as a fraction of 2 small integer numbers. They have 

proven to be very important in the architecture of the planetary 

systems ( Batygin, 2015; Fabrycky et al., 2014 ). A less common case 

of resonance ensues when the mean motions of three bodies P 0 , 

P 1 and P 2 verify 

k 0 n 0 + k 1 n 1 + k 2 n 2 � 0 (1) 

being k i small integers, generating which is called a three body res- 

onance (3BR). In some cases, the 3BRs can be the consequence of 

a chain of two 2BRs as is the case of the Galilean satellites stud- 

ied since Laplace. In fact, the three innermost Galilean satellites, 

Io, Europa and Ganymede, verify the 2BR relations n I − 2 n E ∼ 0 

and n E − 2 n G ∼ 0 . Subtracting both expressions we obtain the 3BR 

n I − 3 n E + 2 n G ∼ 0 , called Laplacian resonance. The resulting dy- 

namics it is not a mere addition of the two 2BRs and the emerging 

3BR generates a new complex dynamics. The Laplacian resonance 

is a paradigmatic case of a 3BR generated by the superposition or 

chains of two 2BRs. On the other hand, there are also 3BRs that 
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cannot be decomposed as chains of 2BRs and we will call them 

pure . Thousands of asteroids in pure 3BRs with Jupiter and Saturn 

can be found in the Solar System ( Smirnov and Shevchenko, 2013 ). 

A relevant parameter of the 3BRs is the order defined as q = 

| k 0 + k 1 + k 2 | . It is known that the lower the order the larger 

the dynamical effects of the resonance. That is why between the 

Galilean satellites the dominant 3BR is n I − 3 n E + 2 n G ∼ 0 , and not 

for example n I − n E − 2 n G ∼ 0 which is of order 2 and obtained 

adding the 2BRs instead of subtracting them. Note that the reso- 

nant condition (1) can be written as 

k 1 (n 1 − n 0 ) + k 2 (n 2 − n 0 ) + (k 0 + k 1 + k 2 ) n 0 � 0 (2) 

which means that for zero order resonances, even in the case 

of pure 3BRs, the planets P 1 and P 2 are in a simple 2BR k 1 : k 2 
when looked from the rotating frame of the planet P 0 . No other 

3BRs have this property which makes zero order 3BRs a special 

case. Then, it is not surprising that zero order 3BRs have been 

deserved most the attention. They were studied for example by 

Aksnes (1988) who obtained general formulae with applications 

in the asteroid belt and systems of satellites. The case of Lapla- 

cian resonance in the Galilean satellites has been intensely stud- 

ied ( Ferraz-Mello, 1979; Lainey et al., 2009; Malhotra, 1991; Peale 

and Lee, 2002; Showman and Malhotra, 1997; Showman et al., 

1997; Sinclair, 1975 ). Superposition or chains of 2BRs were also 

studied in the major Saturnian satellites ( Callegari and Yokoyama, 

2010 ) and in extrasolar systems ( Batygin et al., 2015; Batygin and 

Morbidelli, 2013; Libert and Tsiganis, 2011; Martí et al., 2013; Pa- 

paloizou, 2015 ). Quillen and French (2014) focused on systems with 
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close orbits with applications to the inner Uranian satellites, where 

it is remarked that 3BRs as consequence of superposition of first 

order 2BRs are the strongest ones. On the other hand, pure 3BRs 

were studied for example by Lazzaro et al. (1984) for the spe- 

cific case of the Uranian satellites and by Nesvorný and Morbidelli 

(1999) where a complete planar theory was developed for the 

asteroidal, massless, case. The situation among the outer planets 

of the Solar System was analyzed numerically by Guzzo (2005) ; 

2006 ). Quillen (2011) developed an analytical theory for general 

zero order resonances between three massive bodies in very close 

orbits while Gallardo (2014) developed a semianalytical method for 

estimation of the resonance’s strength for pure 3BRs of any order 

for the asteroidal case assuming the perturbing planets in circular 

and coplanar orbits and the asteroid in an arbitrary orbit. Finally, 

it is worth mention that Showalter and Hamilton (2015) suggested 

that the satellites of Pluto, Styx, Nix and Hydra, are driven by the 

zero order 3BR 3 n S − 5 n N + 2 n H ∼ 0 . 

1.1. Looking for the disturbing function 

The dynamics of a system trapped in a 3BR is determined by 

the resonant disturbing function, which its obtention is not a triv- 

ial point. The disturbing function for a 3BR emerges after a second 

averaging procedure applied on the resulting expressions of a first 

averaging involving the mutual perturbations between the planets 

taken by pairs ( Nesvorný and Morbidelli, 1999 ). The final expres- 

sion of the resonant disturbing function for planet P 0 assumed in 

the resonance given by Eq. (1) is a summatory of the type 

R = k 2 m 1 m 2 

∑ 

j 

P j cos (σ j ) (3) 

where k is the Gaussian constant and m 1 and m 2 the planetary 

masses, with the critical angle 

σ j = k 0 λ0 + k 1 λ1 + k 2 λ2 + γ j (4) 

and 

γ j = k 3 � 0 + k 4 � 1 + k 5 � 2 + k 6 �0 + k 7 �1 + k 8 �2 (5) 

being λ, ϖ and � the mean longitudes, longitudes of the perihe- 

lia and longitudes of the nodes respectively, k 0 , k 1 , k 2 are integers 

fixed by the resonance and the k i > 2 are arbitrary integers but ver- 

ifying the d’Alembert condition 

8 ∑ 

i =0 

k i = 0 (6) 

P j is a polynomial function depending on the eccentricities and 

inclinations which its lowest order term is 

Ce 
| k 3 | 
0 

e 
| k 4 | 
1 

e 
| k 5 | 
2 

sin (i 0 ) 
| k 6 | sin (i 1 ) 

| k 7 | sin (i 2 ) 
| k 8 | (7) 

The calculation of the coefficients C is a very laborious task that 

must be done case by case and it is so challenging that only the 

planar case was studied by analytical methods and consequently 

there are not expansions involving sin ( i i ) published up to now. An 

example of this development can be found in Gomes (2012) where 

an expansion for a specific 3BR in an extrasolar planar system is 

obtained. The expansion given by Eq. (3) implies that for a given 

resonance there are several σ j contributing to the resonant motion. 

Each σ j generates specific dynamical effects and the joint action of 

all σ j is called multiplet. Nevertheless, the expansion (3) can be 

reduced to a few terms when the eccentricities and inclinations 

are very small. In particular, when e 1 = e 2 = i 1 = i 2 = 0 the lowest 

order non null terms for P j are those with k 4 = k 5 = k 7 = k 8 = 0 : 

Ce 
| k 3 | 
0 

sin (i 0 ) 
| k 6 | cos (k 0 λ0 + k 1 λ1 + k 2 λ2 + k 3 � 0 + k 6 �0 ) (8) 

from which can be deduced that for three coplanar orbits ( i 0 = 0 ) 

the only non null terms are those with k 6 = 0 , and consequently 

the lowest order term in the expansion is proportional to e 
q 
0 
, 

where q = | k 3 | . This explain why the lower the order the stronger 

the resonance. In case that e 0 = 0 but with i 0 � = 0 the non null 

terms are those with k 3 = 0 which result proportional to sin ( i 0 ) 
q 

instead, where q = | k 6 | . But, as we explain below, if | k 6 | is odd 

the resulting principal term of the expansion is proportional to 

sin ( i 0 ) 
2 q . Note that for coplanar circular orbits all terms are null 

except for zero order resonances because in this special case the 

principal terms are independent of e i , i i . 

To avoid the difficulties of the analytical methods Gallardo 

(2014) proposed a semianalytical method for the estimation of the 

strength of a resonance on a massless particle in an arbitrary orbit 

under the effect of two perturbing planets in circular coplanar or- 

bits. The method, which is essentially an estimation of the ampli- 

tude of the disturbing function factorized by an arbitrary constant 

coefficient, was applied to minor bodies captured in 3BRs with the 

planets of the Solar System. In the present work, in Section 2 we 

extend the method to a system of three massive bodies with ar- 

bitrary orbits and we apply it to an hypothetical planetary system 

in order to analyze the dependence of the strengths on the orbital 

parameters. In Section 3 we explore by numerical methods some 

of the properties of the resonances that our method predicts and 

we apply the method to the case of the Galilean satellites. The con- 

clusions are presented in Section 4 . 

2. Strength for planetary three body resonances and its 

dependence with the parameters 

Strictly, 3BRs between three planets P 0 , P 1 and P 2 with ele- 

ments ( a i , e i , i i , �i , ϖi ) and masses m 0 , m 1 and m 2 around a star 

of mass M occur when a particular critical angle given by Eq. (4) is 

oscillating over time. In this work we call p = | k 0 | + | k 1 | + | k 2 | and 

we note as k 0 + k 1 + k 2 the resonance involving the three planets, 

where always k 0 > 0. We will not consider the case of 3BRs as 

result of superposition of 2BRs because the 2BRs will override the 

dynamical effects of the 3BR we are trying to study, with the ex- 

ception of systems with near zero eccentricity orbits. We will con- 

sider the planets P 1 and P 2 at fixed semimajor axes a 1 < a 2 and the 

third “test” planet P 0 with the semimajor axis defined by the res- 

onant condition which can result in an internal, external o middle 

position with respect to P 1 and P 2 . The approximate nominal loca- 

tion of the test planet P 0 assumed in the resonance k 0 + k 1 + k 2 is 

deduced from Eq. (1) : 

a −3 / 2 
0 

� −k 1 
√ 

(M + m 1 ) 

k 0 
√ 

(M + m 0 ) 
a −3 / 2 

1 
− k 2 

√ 

(M + m 2 ) 

k 0 
√ 

(M + m 0 ) 
a −3 / 2 

2 
(9) 

which must be positive otherwise the resonance does not exist. In 

order to obtain a numerical estimation of the resonance’s strength 

we extended the method given by Gallardo (2014) to a system 

of three massive bodies with arbitrary orbits. The details of the 

method and the devised algorithm can be found in the Appendix. 

Essentially, this new method predicts different strengths called S 0 , 

S 1 , S 2 for the three massive bodies, that means, each massive body 

feels the resonance in a different way. Each S is related to the am- 

plitude of the variations of R in Eq. (3) caused by the cumulative 

effect of all involved terms. Then, the method cannot distinguish 

between the dynamical effects of each term of a multiplet for a 

given resonance, it only provides a global estimation. 

In order to test the algorithm and to explore the dependence 

of the strengths with the different parameters involved we applied 

it to an hypothetical planetary system with m 1 = m 2 = 0 . 0 0 01 M �, 

a 1 = 1 . 0 au, a 2 = 3 . 6 au around a star with 1 M � and we calcu- 

late all resonances with q ≤ 9 and p ≤ 30 between 2.0 au and 2.6 

au, that means with the planet P 0 located in between and exclud- 

ing close-encounter situations. With the exception of Section 3.3 , 
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