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a b s t r a c t

In a previous paper (Descamps, P. [2015]. Icarus 245, 64–79), we developed a specific method aimed to
retrieve the main physical characteristics (shape, density, surface scattering properties) of highly elon-
gated bodies from their rotational lightcurves through the use of dumb-bell-shaped equilibrium figures.
The present work is a test of this method. For that purpose we introduce near-equilibrium dumb-
bell-shaped figures which are base dumb-bell equilibrium shapes modulated by lognormal statistics.
Such synthetic irregular models are used to generate lightcurves from which our method is successfully
applied. Shape statistical parameters of such near-equilibrium dumb-bell-shaped objects are in good
agreement with those calculated for example for the Asteroid (216) Kleopatra from its dog-bone radar
model. It may suggest that such bilobed and elongated asteroids can be approached by equilibrium
figures perturbed be the interplay with a substantial internal friction modeled by a Gaussian random
sphere.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

In an earlier work, dumb-bell-shaped hydrostatic equilibrium
figures were proposed to describe shapes of contact-binary minor
planets with a bimodal appearance (Descamps, 2015). However,
small bodies in the Solar System are quite obviously not liquid
but exhibit many pieces of evidence that most of them are ‘‘piles
of rubble” (Davis et al., 1979), i.e. loosely consolidated aggregates
of collisional fragmented material with zero tensile strength held
together by mutual gravitational forces (see for example the
review of Scheeres et al., 2010). One of the most convincing evi-
dence results from high porosities measured in asteroids since
the discovery of asteroid satellites which allowed density to be
estimated. Significant macro-porosity sketches rubble pile models
made of grains or boulders resting on each other with large voids.
The fluid approach can give only overall shapes consistent with
their angular momentum of rotation. Rubble piles which are much
weaker than coherent structures are able to withstand shear
strength due to their internal friction. This allows a much wider
range of possible shapes not necessarily close to equilibrium
shapes and thereby topography out of hydrostatic equilibrium
can be maintained.

In the present paper, near-equilibrium dumb-bell shapes are
introduced as a combination of dumb-bell-shaped equilibrium fig-
ures with a Gaussian random sphere which is used to simulate the
departures of real shapes from pure equilibrium figures. Although we
do not know the true shape statistics of small bodies, the Gaussian
hypothesis for the logarithmic radius of the perturbing sphere
allows to simulate irregular shapes fully characterized by only a
few statistical parameters. This paper aims at testing the reliability
of our fitting and modeling protocol by dumb-bell-shaped equilib-
rium figures (Descamps, 2015) through simulations of noisy
rotational lightcurves of pseudo-equilibrium dumb-bell shapes.

2. Near-equilibrium dumb-bell-shaped figures

2.1. Gaussian random sphere

Muinonen (1998) first used lognormal statistics to modeling the
irregular shapes of asteroids and cometary nuclei through the so-
called Gaussian random sphere. The Gaussian sphere is fully
described by only three statistical parameters: the mean radius a,
the relative standard deviation r and the correlation angle C. In
the limit of small standard deviations of radius and small correla-
tion angles, the lognormal statistics reduces to the Gaussian statis-
tics. A suitable covariance function of the logarithmic radius was
devised for the generation of Gaussian spheres that closely resem-
ble the shapes observed for asteroids. In spherical coordinates, the
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radius of a Gaussian random sphere, r(h, u) with respect to its cen-
ter of mass can be fully defined by the mean radius and the covari-
ance function of the logarithmic radius s(h, u).

rðh;uÞ ¼ a expðsðh;uÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p

sðh;uÞ ¼
X1
l¼0

Xl

m¼�l

slmYlmðh;uÞ
ð1Þ

s(h,u) is the logarithmic radial distance, a and r are respectively the
mean radius and standard deviation for the radial distance Ylm(h,u)s
represents orthonormal spherical harmonics. The value of radial
standard deviation r quantizes the irregularity in shape relative
to a sphere (r = 0 for spherical bodies). The slms are random vari-
ables which obey normal statistics with zero means and variances
depending on the shape statistics specified by the so-called covari-
ance function of logradius. If we denote the angular distance
between two directions (h1, u1) and (h2, u2) by c, the covariance
function Rs(c) is related to the correlation function Cs(c) by Rs(c)
= b2Cs(c), where b is the standard deviation of the logradius. The
variances r2 and b2 are interrelated through r2 = exp(b2) � 1. The
correlation function is generally described by a series expansion
of Legendre polynomials (including lower and upper bounds for
the degree), the coefficients of the Legendre polynomials Cl follow
a power-law dependence Cl / l�m. It appears to be a true law, with
m � 4, for overall shapes of asteroids (Muinonen and Lagerros,
1998) and even for Saharan dust particles (Nousiainen et al.,
2003). However, in the present work we make use of the Gaussian
correlation function, the correlation between two radii over solid
angle c is then given by

CsðcÞ ¼ exp �1
2

sin2 c=2
sin2 C=2

 !
ð2Þ

where C is the correlation angle of the Gaussian sphere, defined as
the angular displacement over which the correlation drops to 1=

ffiffiffi
e

p
.

A small correlation angle leads to increase short-distance fluctua-
tions on the body surface (higher number of ‘‘valleys” and ‘‘hills”).

This choice is made suitable from the fact that the elongation and
flatness of the figures are already included in the base dumb-bell
figure (see Section 2.3). Such a correlation function was also used
for the same reason for the natural extension of the Gaussian ran-
dom sphere in the form of the Gaussian random ellipsoid
(Muinonen and Pieniluoma, 2011). Further details regarding the
description and generation of Gaussian random spheres are given
in Muinonen (1998) and Muinonen and Lagerros (1998).

2.2. Statistics of some irregular shapes of small bodies

The inverse problem of determining the statistical parameters
from a sample shape is briefly described by Muinonen and
Lagerros (1998). The mean radius ~a, the relative standard deviation
of radius ~r, and the standard deviation of slopes ~q of an individual
shape are given by the following relationships:

~a ¼ EðrÞ
~r2 ¼ 1

~a2
½Eðr2Þ � EðrÞ2�

~q2 ¼ 1
2
E

r2h
r2

þ r2u
r2 sin2 h

 ! ð3Þ

where E((r(h, u)) is the intrinsic expectation of radius r(h, u)

EðrÞ ¼ 1
4p

Z p

0

Z 2p

0
rðh;uÞ sin hdhdu

rh and ru are the partial derivatives of the radius. The standard devi-
ations of radius and slope can be related to the correlation angle ~C

Table 1
Statistical properties of some rubble-pile asteroids (Section 2.2).

Object ~r ~q ~U (�) ~C (�)

22 Kalliope 0.15 0.30 16.67 28.64
45 Eugenia 0.18 0.35 19.46 20.04
87 Sylvia 0.12 0.23 12.92 29.32
107 Camilla 0.12 0.23 13.07 29.32
121 Hermione 0.29 0.59 30.61 28.22
130 Elektra 0.12 0.23 12.71 29.46
216 Kleopatra 0.62 0.75 36.77 44.67
1999 KW4a 0.07 0.23 13.13 16.97
1999 KW4b 0.15 0.28 15.47 30.58
2867 Steins 0.15 0.34 18.59 25.29
4769 Castalia 0.27 0.53 28.74 28.14
25143 Itokawa 0.31 0.47 25.34 37.03
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Fig. 1. The standard deviation of slope angle ~U against the relative standard
deviation of the radius ~r and the correlation angle ~C for the 12 individual shapes of
rubble-pile asteroids listed in Table 1. Iso-gamma lines are drawn for
~C ¼ 20� ; 30� and 40� . Most of bodies have a correlation angle close to ~C ¼ 30�

and a standard deviation of the radius ranging from 0.1 to 0.3.

Table 2
Best-fit dumb-bell shaped solutions from simulated lightcurves of near-equilibrium DB-shaped bodies for a nominal aspect angle w = 85� and a scattering parameter k = 0.24.
Statistical parameters of the Gaussian random sphere (rGRS,UGRS, CGRS) and the resulting DB-shaped bodies (~r; ~U; ~C) are shown for two values ofX and three standard deviations
of radius rGRS of the associated GRS.

X rGRS UGRS (�) CGRS (�) ~r ~U (�) ~C (�) Xfit kfit wfit (�) Std. dev. (mag) v2r

0.29 0.097 12.9 24.5 0.85 41.1 50.3 0.287 ± 0.002 0.17 ± 0.08 83.3 ± 2.2 0.021 1.1
0.16 20.7 24.2 0.82 41.7 47.7 0.287 ± 0.002 0.24 ± 0.10 83.1 ± 2.2 0.039 3.8
0.22 27.5 23.8 0.79 42.9 44.1 0.287 ± 0.002 0.23 ± 0.10 82.5 ± 2.2 0.045 4.6

0.36 0.12 17.0 23.4 0.43 34.3 34.9 0.348 ± 0.010 0.29 ± 0.08 82.9 ± 1.9 0.025 1.6
0.18 24.9 21.8 0.37 33.5 31.2 0.346 ± 0.012 0.18 ± 0.07 78.9 ± 2.7 0.032 2.7
0.24 32.7 21.5 0.35 36.1 27.2 0.311 ± 0.015 0.56 ± 0.20 78.8 ± 2.7 0.057 8.4
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