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a b s t r a c t

The planetary exospheres are poorly known in their outer parts, since the neutral densities are low com-
pared with the instruments detection capabilities. The exospheric models are thus often the main source
of information at such high altitudes. We present a new way to take into account analytically the addi-
tional effect of the radiation pressure on planetary exospheres. In a series of papers, we present with an
Hamiltonian approach the effect of the radiation pressure on dynamical trajectories, density profiles and
escaping thermal flux. Our work is a generalization of the study by Bishop and Chamberlain (1989). In
this second part of our work, we present here the density profiles of atomic Hydrogen in planetary exo-
spheres subject to the radiation pressure. We first provide the altitude profiles of ballistic particles (the
dominant exospheric population in most cases), which exhibit strong asymmetries that explain the
known geotail phenomenon at Earth. The radiation pressure strongly enhances the densities compared
with the pure gravity case (i.e. the Chamberlain profiles), in particular at noon and midnight. We finally
show the existence of an exopause that appears naturally as the external limit for bounded particles,
above which all particles are escaping.

� 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The exosphere is the upper layer of any planetary atmosphere:
it is a quasi-collisionless medium where the particle trajectories
are more dominated by gravity than by collisions. Above the exo-
base, the lower limit of the exosphere, the Knudsen number
(Ferziger and Kaper, 1972) becomes large, collisions become
scarce, the distribution function cannot be considered as Maxwel-
lian any more and, gradually, the trajectories of particles are essen-
tially determined by the gravitation and radiation pressure by the
Sun. The trajectories of particles, subject to the gravitational force,
are completely solved with the equations of motion, but it is not
the case with the radiation pressure (Bishop and Chamberlain,
1989).

To describe correctly the exospheric population, we distinguish
three types of particles: escaping, ballistic and satellite
(Chamberlain, 1963; Banks and Kockarts, 1973).

� The escaping particles come from the exobase and have a posi-
tive mechanical energy: they can escape from the gravitational
influence of the planet with a velocity larger than the escape
velocity. These particles are responsible for the Jeans’ escape
(Jeans, 1916).

� The ballistic particles also come from the exobase but with a
negative mechanical energy, they are gravitationally bound to
the planet. They reach a maximum altitude and fall down on
the exobase if they do not undergo collisions.

� The satellite particles never cross the exobase. They also have a
negative mechanical energy but their periapsis is above the exo-
base: they orbit along an entire ellipse around the planet with-
out crossing the exobase. The satellite particles result from
ballistic particles undergoing few collisions mainly near the
exobase. Thus, they do not exist in a collisionless model of the
exosphere.

By definition, their trajectories are conics in the pure gravity
case. Chamberlain (1963) proposed an analytical approach to esti-
mate the density of each population via Liouville’s theorem which
states that the distribution function remains constant along a
dynamical trajectory. A Maxwellian distribution function is
assumed at the exobase and propagated to the upper layers via
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Liouville’s theorem. The density for each population is then derived
as the product between the barometric law and a partition func-
tion f.

nðrÞ ¼ nbarfðkÞ ¼ nðrexoÞek�kexo ðfbal þ fescÞ ð1Þ

where k is the ratio between the gravitational and thermal energies.

kðrÞ ¼ GMm
kBTexor

¼ vescðrÞ2
U2 ð2Þ

with r the distance from the center of the body, vescðrÞ the escaping
velocity, U the most probable velocity for the Maxwellian distribu-
tion, G the gravitational constant, M the mass of the planet or the
satellite and Texo the temperature at the exobase considered con-
stant in the exosphere.

The radiation pressure disturbs the ellipses or hyperbolas
described by these particles. The resonant scattering of solar pho-
tons leads to a total momentum transfer from the photon to the
atom or molecule. In the non-relativistic case, assuming an isotro-
pic reemission of the solar photon, this one is absorbed in the Sun
direction and scattered with the same probability in all directions.
For a sufficient flux of photons in the absorption wavelength range,
the reemission in average does not induce any momentum transfer
from the atom/molecule to the photon. The differential of momen-
tum between before and after the scattering each second imparts a
force, the radiation pressure. Bishop and Chamberlain (1989) pro-
posed to take into account this effect on the structure of planetary
exospheres. In particular, they highlighted analytically the ‘‘tail”
phenomenon: the density for atomic Hydrogen is higher in the
nightside direction than in the dayside direction, as observed for
the first time by OGO-5 (Thomas and Bohlin, 1972; Bertaux and
Blamont, 1973).

This problem is similar to so-called Stark effect (Stark, 1914):
the effect of a constant electric field on the atomic Hydrogen’s elec-
tron. Its study shows it can be transposed to celestial mechanics in
order to describe the orbits of artificial and natural satellites in the
perturbed two-body problem. A first but incomplete work was per-
formed by Bishop and Chamberlain (1989). They focused on the
density profiles along the Sun-planet axis: in the velocity phase
space, the problem is thus only 2D (one component of the angular
momentum is null, p/, and thus the problem takes place on a
hyperplane in the 3D-velocity phase space). They determined the
density profiles for bounded trajectories (only ballistic particles,
neither escaping nor satellite particles) for atomic Hydrogen along
the Sun-planet axis, on the dayside and the nightside, for Earth,
Venus, Mars or for sodium at Mercury.

In this work, we generalize the formalism developed by Bishop
and Chamberlain (1989) to the whole exosphere (3D case) and
highlight several phenomena. Our study is based on Beth et al.
(2016), where we detailed the dynamical aspects induced by the
radiation pressure on the trajectories of exospheric particles. We
now present the implications on exospheric density profiles, local
time asymmetries as well as a specific study of the particles with
satellite orbits. We will briefly describe the formalism used in
Section 2, before we derive the neutrals density in Section 3, and
present the results in Section 4 and conclude in Section 5.

2. Model

For this work, we decide to study the effect of the radiation
pressure on atomic Hydrogen in particular. We model the radiation
pressure by a constant acceleration a coming from the Sun. As pre-
viously defined by Bishop (1991), this acceleration depends on the
line center solar Lyman-a flux f 0, in 1011 photons cm�2 s�1 Å�1:

a ¼ 0:1774 f 0 ðcm s�2Þ ð3Þ
This problem is similar to the classical Stark effect (Stark, 1914):

a constant electric field (here the radiation pressure) applied on an
electron (here an Hydrogen atom) attached to a proton (here the
planet). Both systems are equivalent because the force applied by
the proton (the planet) on the electron (the Hydrogen atom), the
electrostatic force, varies in r�2 as the gravitational force from
the planet on the Hydrogen atom. Thus, we adopt the same formal-
ism as Sommerfeld (1934) adopting the parabolic coordinates. We
use the transformation:

u ¼ r þ x ¼ rð1þ cos hÞ
w ¼ r � x ¼ rð1� cos hÞ ð4Þ

where x is the sunward coordinate and h the angle with respect to
the Sun-planet axis. Along the Sun-planet axis, w is null in the sun-
ward direction whereas u is null in the nightside direction. Conse-
quently, the Hamiltonian becomes:

Hðu;w;pu;pw;p/Þ ¼
2up2

u þ 2wp2
w

mðuþwÞ þ p2
/

2muw
� 2GMm

uþw
þma

u�w
2

ð5Þ
independent of t, the time and /, the azimuth about the planet-Sun
axis. pu; pw and p/ are the conjugate momenta, GM the standard
gravitational parameter of the planet andm the mass of the species.

According to canonical relations, we have:

pu ¼ mðuþwÞ
4u

du
dt

pw ¼ mðuþwÞ
4w

dw
dt

p/ ¼ muw
d/
dt

ð6Þ

We do not assume p/ ¼ 0 as Bishop and Chamberlain (1989)
did: their study is restricted to the Sun-planet axis where either
u ¼ 0 or w ¼ 0.

As shown by Bishop and Chamberlain (1989), the problem has
three constants of the motion: E the mechanical energy, p/ and A
defined as

E ¼ H ð7Þ
because the forces are conservative,

A ¼ 2muE� 4up2
u �

p2
/

u
�m2au2 þ 2GMm2

¼ �2mwEþ 4wp2
w þ p2

/

w
�m2aw2 � 2GMm2 ð8Þ

a separation constant (Bishop and Chamberlain, 1989) which is sim-
ilar to the norm of the Laplace–Runge–Lenz vector and p/ because

dp/

dt
¼ � @H

@ _/
¼ 0 ð9Þ

As function of these three constants, we can rewrite the conju-
gate momenta:

pu ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�P3ðuÞ
4u2

r

pw ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3ðwÞ
4w2

r ð10Þ

with

P3ðuÞ ¼ mau3 � 2mEu2 � ð2GMm2 � AÞuþ p2
/

Q3ðwÞ ¼ maw3 þ 2mEw2 þ ð2GMm2 þ AÞw� p2
/

ð11Þ
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