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a b s t r a c t

The pressure torque by a liquid core that drove Mercury to the nominal Cassini state of rotation is
dominated by the torque from the solid inner core. The gravitational torque exerted on Mercury’s mantle
from an asymmetric solid inner core increases the equilibrium obliquity of the mantle spin axis. Since the
observed obliquity of the mantle must be compatible with the presence of a solid inner core, the moment
of inertia inferred from the occupancy of the Cassini state must be reduced to compensate the torque
from the inner core and bring Mercury’s spin axis to the observed position. The unknown size and shape
of the inner core means that the moment of inertia is more uncertain than previously inferred.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Mercury is in a stable spin–orbit resonance in which the
rotational angular velocity is precisely 1.5 times the mean orbital
motion (Pettengill and Dyce, 1965; Colombo and Shapiro, 1966).
This rotation state is a natural outcome of tidal evolution
(Goldreich and Peale, 1966) or other dissipative effects, although
the details of the resonance capture mechanism are still debated
(Correia and Laskar, 2004, 2009, 2012; Wieczorek et al., 2012;
Noyelles et al., 2014). In addition, the same dissipation brings
Mercury to Cassini state 1, wherein Mercury’s spin axis remains
coplanarwith the orbit normal and Laplace plane normal as the spin
vector andorbit normalprecess around the latterwitha�300,000 yr
period (Colombo, 1966; Peale, 1969, 1974). Because the Laplace
plane is itself variable on long time scales, one can invoke an instan-
taneous Laplace plane that is valid at the present epoch (Yseboodt
andMargot, 2006). On the basis of theoretical calculations, Mercury
is expected to remain close to the Cassini state (Peale, 2006). That
Mercury is very close to this state has beenverifiedwith radar obser-
vations,which give an obliquity of 2:04� 0:08 arcmin (Margot et al.,
2007, 2012), consistent with analysis of tracking data, laser altime-
try, and stereo digital terrain models from the MErcury Surface,

Space ENvironment, GEochemistry, and Ranging (MESSENGER)
spacecraft (Mazarico et al., 2014; Stark et al., 2015). Themost recent
observations show that the best-fit solutions are offset from theCas-
sini state by a few arcseconds, but the uncertainty at one standard
deviation includes the Cassini state.

Pressure torque between Mercury’s fluid core and its mantle
drive Mercury’s spin axis to the Cassini state (Peale et al., 2014)
(hereinafter Paper 1). It thereby dominates dissipative viscous,
topographic, and magnetic effects that would otherwise result in
significant displacement of the observable spin axis from the
Cassini state position. This result is reassuring as Mercury’s spin
is observed to occupy the Cassini state (Margot et al., 2007,
2012; Mazarico et al., 2014; Stark et al., 2015), but at the same time
it frustrates the establishment of any constraints on Mercury’s
interior that could result from a measurable displacement. We
show here that the increase in the obliquity from torques exerted
by an asymmetric solid inner core can be reversed by the reduction
of Mercury’s polar moment of inertia from the value inferred if
there is no inner core. For a small inner core, the current best
estimate of the moment of inertia would be unchanged, but for a
large inner core, the revised estimate would be smaller than the
current estimate.

The assumed model of the planet consists of four homogeneous
layers: crust, mantle, fluid outer core, and solid inner core (Fig. 1). Ri

and qi designate the radii and densities of the various layers, with
subscript c for crust, m for mantle, f for fluid outer core, and s for
solid inner core. Rc ¼ 2440 km is the measured planetary radius,
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and the selected value of qc is described below. The crustal thick-
ness is specified by the choice of Rm. The inner coreqs and Rs are also
specified, as follows.Wewill evolve the spin configuration for three
values of qs (8.0, 9.3, and 10.0 g/cm3) to span the uncertainty in this
value. Five inner core radii will be assumed (0.0 or no inner core,
0.3, 0.4, 0.5, and 0.6 Rc , where Rc should not be confused with Rf ).
The densities qf ; qm along with the radius Rf of the core–mantle
boundary (CMB) will be solved to produce the known values of
the total planetary mass m, the total moment of inertia C=mR2

c ,
and the moment of inertia of the mantle–crust alone ðCm þ CcÞ=C.

The second-degree zonal and tesseral spherical harmonic gravi-
tational coefficients J2 and C22 can be expressed in terms of the den-
sities and radii of the layers and their ellipticities. The ellipticities of
the top of the crust have been measured; the mean polar ellipticity
�c ¼ 5:534� 10�4 and the equatorial ellipticity nc ¼ 4:919� 10�4

(Perry et al., 2015). Expressions for J2 and C22 along with relations
for the assumed equipotential surfaces at the CMB and inner core
boundary (ICB) provide a sufficient number of equations to solve
for all the remaining ellipticities, which change with a change in
the assumed inner core radius. The ellipticities are required to cal-
culate the torques. We will neglect the �15� misalignment of the
equatorial long axis and the �2� misalignment of the short axis of
the crust with those of the geoid as determined by MESSENGER
laser altimetry and radio occultations (Perry et al., 2015).

In Section 2 we write the general dynamical equations that are
derived in Paper 1. Althoughwritten for themantle–crust combina-
tion, they apply to the other two layers representing the fluid core
and the solid inner core with a change in the subscripts of the
parameters. There are three sets of equations that must be solved
simultaneously to map the evolution of the system of equations
for the combined crust and mantle and the outer and inner core
to the equilibrium configuration. The various torques to be used
in the equations are developed in several subsections. The ICB will
be at least gravitationally distorted by the non-radial internal field
of the mantle–crust and fluid outer core and less so by the solar and
rotational fields (Paper 1). We include the mutual gravitational tor-
ques that result from any misalignment of the ellipsoidal shape of
the inner corewith that of themantle. This torque is sustained since

the inner core obliquity remains larger than the mantle obliquity in
equilibrium. We consider this mutual torque along with the direct
solar gravitational torques acting on each of the three layers, the
mantle–crust, the fluid outer core, and the solid inner core. The first
is considered a single layer for the dynamical equations, since man-
tle and crust move together. Pressure torques acting at the CMB and
at the ICB include those induced by gravity and by the fluid velocity
at the ICB and CMB. A viscous interaction provides a dissipative evo-
lution to an equilibrium configuration whereby the spin axes of the
respective layers remain fixed in a frame precessing with the orbit.
The torques from tides, magnetic coupling, and topographic cou-
pling treated in Paper 1 are small and do not affect the evolution
to the equilibrium state. These latter torques are therefore not
included here.

We chose a crustal density qc ¼ 2:8 g=cm3, which we maintain
for all of the calculations. This choice is based on results from the
Moon, where the mean crustal density is 2.6 g=cm3, which implies
considerable porosity (12%) (Wieczorek et al., 2013). The lunar
crustal density approaches 2.4 g=cm3 at the shallowest depths.
The 2:8 g=cm3 chosen for Mercury’s crust can then account for
Mercury’s higher surface gravitational acceleration and perhaps a
lower porosity. The inner core density is arbitrary except that
qs ¼ 8 g=cm3 is taken as a lower limit to possible values. That the

mantle–crust obliquity decreases with C=mR2
c suggests that by

reducing C=mR2
c we can compensate for the increased obliquity

caused by the interaction between the mantle–crust and the inner
core. When the moment of inertia is that which is appropriate for
no inner core, the mantle obliquity is displaced to larger and larger
obliquities as the inner core size increases. The mantle obliquity is
matched to within the observational uncertainty by appropriate
reductions in C=mR2

c for each core size. These reductions increase
as the inner core size increases. Some of the models obtained for
the range of inner core densities are unlikely.

The results are detailed in Section 3 for the ranges of inner core
sizes and densities considered. We show that for an ICB and a CMB
that are equipotential surfaces, the equilibrium position of the
mantle spin is displaced toward obliquities higher than that of the
Cassini state appropriate to Mercury with no solid inner core and
therefore higher than the observed obliquity. We demonstrate
below that the required reductions in C=mR2

c are significant for
Rs > 0:3Rc . The displacement of the evolved mantle spins from the
Cassini state for the unaltered C=mR2

c ¼ 0:346 determined from
the observed obliquity and deduced for Mercury with a fluid core
butno solid inner core is shown forqs ¼ 8:0 g=cm3 only. The restora-
tion of the evolvedmantle-crust spin to the observed position for all
three inner core densities is shown with appropriate reductions in
C=mR2

c .
The mantle–crust obliquity increases with the inner core size.

The displacement vanishes if the direct gravitational torque
between the mantle and inner core is set to zero. The obliquity is
used to determine the moment of inertia of Mercury (e.g., Peale
et al., 2014). The increase in the obliquity of the mantle from grav-
itational torques due to the inner core means that C=mR2

c must be
reduced by an amount that increases with inner core radius to
bring the mantle spin back to the observed position. We discuss
the implications in Section 4 where the values of C=mR2

c versus
Rs, the radius of the solid inner core, are given. This exercise
is repeated for inner core densities of 9.3 g=cm3 and 10.0 g=cm3.

2. Equations of variation

The coordinate systems and angles for the equations that
govern the rotational motion of Mercury are shown in Fig. 2, where
X0;Y 0; Z0 are quasi-inertial axes with the X 0Y 0 plane being the

Fig. 1. Model of Mercury’s interior as four concentric and homogeneous layers.
Note that in our notation Rc is the radius of the crust, which is that of the planet.
This symbol is often used in other publications to indicate the radius of the fluid
core, which in our notation is Rf . We assume Rc ¼ 2440 km and qc ¼ 2:8 g=cm3 in
all our calculations.
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