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a b s t r a c t

The NASAmission GRAIL (Gravity Recovery and Interior Laboratory) inherited its concept from the GRACE
(Gravity Recovery and Climate Experiment) mission to determine the gravity field of the Moon.
We present lunar gravity fields based on the data of GRAIL’s primary mission phase. Gravity field

recovery is realized in the framework of the Celestial Mechanics Approach, using a development version
of the Bernese GNSS Software along with Ka-band range-rate data series as observations and the GNI1B
positions provided by NASA JPL as pseudo-observations.
By comparing our results with the official level-2 GRAIL gravity field models we show that the lunar

gravity field can be recovered with a high quality by adapting the Celestial Mechanics Approach, even
when using pre-GRAIL gravity field models as a priori fields and when replacing sophisticated models
of non-gravitational accelerations by appropriately spaced pseudo-stochastic pulses (i.e., instantaneous
velocity changes).
We present and evaluate two lunar gravity field solutions up to degree and order 200 – AIUB-GRL200A

and AIUB-GRL200B. While the first solution uses no gravity field information beyond degree 200, the
second is obtained by using the official GRAIL field GRGM900C up to degree and order 660 as a priori
information. This reduces the omission errors and demonstrates the potential quality of our solution if
we resolved the gravity field to higher degree.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

The NASA mission Gravity Recovery and Interior Laboratory
(GRAIL) is the latest and most sophisticated satellite mission for
the determination of the lunar gravity field (Zuber et al., 2013b).
It consists of two satellites, GRAIL-A (‘‘Ebb”) and GRAIL-B (‘‘Flow”),
launched on 10 September 2011, and entering nearly polar lunar
orbits in the beginning of 2012. Data for gravity field recovery
was acquired during two science phases, given by the requirement
that the elevation of the Sun above the orbital plane is large
enough for the solar panels to produce enough power. In the pri-
mary mission (PM) phase (1 March to 29 May 2012) the mean alti-
tude of the two satellites was 55 km above the lunar surface
(corresponding to a revolution period of about 113 min). The
eccentricity of the orbits varied between around 0.02 at the begin-
ning and end of the PM phase and 0.003 in the middle, while the
inclination changed between 89:9� and 88:5� with a bimonthly
period. In the extended mission (EM) phase (30 August to 14
December 2012) the orbits were lowered to 23 km on average

(Zuber et al., 2013a). The separation between the two spacecraft
varied from 40 km to 220 km during the mission to find a
compromise between sensitivity and multipath effects on the
inter-satellite communications (Konopliv et al., 2013). The mission
ended with a controlled crash of the two probes on the Moon on 17
December 2012.

The concept of the mission was inherited from the
Earth-orbiting mission Gravity Recovery and Climate Experiment
(GRACE, Tapley et al., 2004) in that the key observations consisted
of ultra-precise inter-satellite Ka-band range measurements
(Asmar et al., 2013). The use of these observations enables data
acquisition even when the spacecraft are not Doppler-tracked from
the Earth. Together with the one- and two-way Doppler observa-
tions from the NASA Deep Space Network (DSN), GRAIL data allows
for a determination of the lunar gravity field with an unprece-
dented accuracy for both the near- and the far-side of the Moon.
Its results are essential to improve the understanding of the
Moon’s internal structure and thermal evolution (Wieczorek
et al., 2013).

The official GRAIL gravity field models based on PM data consist
of spherical harmonic (SH) coefficients up to degree and order 660
[GL0660B (Konopliv et al., 2013) and GRGM660PRIM (Lemoine
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et al., 2013)], while the latest models resolve the selenopotential
up to degree and order 900 [GL0900D (Konopliv et al., 2014) and
GRGM900C (Lemoine et al., 2014)] by using both PM and EM data.
These solutions were obtained using the software packages
MIRAGE, a gravity processing version of the JPL Orbit Determina-
tion Program (ODP, Moyer, 2003), and GEODYN (Pavlis et al.,
2013), respectively.

Apart from the Ka-band range and Doppler data, satellite
positions (GNI1B positions) of the GRAIL probes from the dynamic
orbit determination performed at JPL are also available. As
explained by Jäggi et al. (2015), the usage of these positions as
pseudo-observations allows for a relatively straightforward
adaption of our gravity field recovery procedures from GRACE
(Jäggi et al., 2008), where GPS-derived kinematic positions are
available, to GRAIL without having first to implement Doppler data
processing. These adaptions are performed within a development
version of the Bernese GNSS Software (Dach et al., 2007). The use
of GNI1B positions is only considered an intermediate solution
for our approach as it will not lead to a completely independent
gravity field solution.

In addition to normalized spherical harmonic coefficients up to
degree 200, we set up arc- and satellite-specific parameters (like
initial state vectors and pseudo-stochastic pulses) as common
parameters for all measurement types (see Section 2 for more
details). Pseudo-stochastic pulses shall compensate for imperfect
models of non-gravitational accelerations, e.g., caused by solar
radiation pressure.

This paper is structured as follows. In Section 2 we briefly
review the Celestial Mechanics Approach (CMA) for gravity field
determination. Section 3 discusses some results for the initial orbit
determination of the GRAIL satellites and outlines the performance
of our data modeling, paying attention to possible limitations due
to missing radiation pressure modeling. We point out that up to
release 2 of the level-1b data the estimation of a Ka-band time bias
is mandatory (see Section 3.3). In Section 4 we focus on gravity
fields obtained by using the CMA. We present our lunar gravity
field solutions up to degree and order 200. Section 5 gives an out-
look on possible further improvements to our orbit and gravity
field modeling. Section 6 presents our final remarks and
conclusions.

2. The Celestial Mechanics Approach

The Celestial Mechanics Approach (CMA, Beutler et al., 2010)
treats gravity field recovery as an extended orbit determination
problem. It is a dynamic approach allowing for pseudo-stochastic
parameters to absorb force model deficiencies.

For a GRAIL probe the equations of motion in the inertial system
read as

€~r ¼ �GMM
~r
r3

þ~f ðt;~r; _~r; q1; . . . ; qdÞ; ð1Þ

where GMM denotes the gravity parameter of the Moon, ~r is the

selenocentric position of the probe and ~f collects all perturbing
accelerations as described in Section 2.1. Dots indicate derivatives
w.r.t. time. The second-order differential Eq. (1) require six initial
or boundary conditions for a particular solution. In the framework
of the CMA satellite motion is described as an initial value
problem.1 The initial conditions ~rðt0Þ ¼~rða; e; i;X;x;u; t0Þ and
_~rðt0Þ ¼ _~rða; e; i;X;x;u; t0Þ at an initial epoch t0 are defined by six
Keplerian osculating elements. a denotes the semi-major axis, e
the numerical eccentricity, i the inclination w.r.t. the equatorial

plane, X the right ascension of the ascending node, x the argument
of periapsis, and u the argument of latitude at time t0. q1; . . . ; qd para-
metrize the perturbing accelerations and are both arc-specific orbit
parameters (e.g., empirical accelerations) and general parameters
such as gravity field coefficients. Let us denote the 6þ d parameters
(initial conditions and qi) collectively as pi.

2.1. Perturbing accelerations

The perturbing accelerations ~f on the right-hand side of the
equations of motion (1) are given by

~f ¼ Ti
frV þ~ab þ~at þ~ar þ~an þ~ae; ð2Þ

where V denotes the lunar gravity potential in the Moon-centered

body-fixed reference frame, Ti
f is a rotation matrix relating the

Moon-centered body-fixed with the inertial system, ~ab are the
third-body accelerations, ~at denote accelerations due to the tidal
deformation of the Moon, ~ar are relativistic corrections, ~an
non-gravitational accelerations and ~ae empirical accelerations.

2.1.1. The gravity potential

The gravitational acceleration~ag ¼: Ti
frV exerted by the Moon is

written in terms of the lunar gravity potential V, which is
expressed using a standard spherical harmonics (SH) expansion
(Heiskanen and Moritz, 1967) as

Vðr;k;/Þ¼GMM

r

Xlmax

l¼1

RM

r

� �lXl

m¼0

Plmðsin/Þ � Clm cosðmkÞþSlm sinðmkÞ
h i

;

ð3Þ
where RM is the reference radius (1738 km) of the Moon and r; k and
/ denote the selenocentric radius, longitude and latitude of the
evaluation point, respectively. Plm are the fully normalized associ-
ated Legendre functions of degree l and order m, and Clm and Slm
are the corresponding SH coefficients. For the lunar body-fixed ref-
erence system, we use the Principal Axes (PA) system with axes
coinciding with the principal axes of inertia of the Moon. The Euler
(libration) angles connecting the International Celestial Reference
System (ICRS)2 with the PA system are taken from the DE421 JPL
ephemerides (Folkner et al., 2009).

In this article we present lunar gravity field solutions up to a
maximum degree lmax ¼ 200.

2.1.2. Third-body accelerations
We take third-body accelerations due to Earth, Sun, Jupiter,

Venus and Mars into account. These celestial bodies are all approx-
imated as point masses with positions taken from the JPL ephe-
merides DE421.

2.1.3. Tidal acceleration
The tidal deformation of the Moon due to other celestial bodies

causes an additional acceleration acting on the GRAIL probes.
According to the IERS2010 conventions (Petit and Luzum, 2010)
this acceleration can be expressed in terms of a change of the
(tide-free) SH gravity field coefficients as

DClm � iDSlm ¼ klm
2lþ 1

X3
j¼2

GMj

GMM

RM

rj

� �lþ1

� PlmðsinUjÞe�imkj ; ð4Þ

where j labels the perturbing body (Earth and Sun) of mass Mj. rj, kj
and Uj denote the spherical coordinates of the perturbing body in
the lunar body-fixed system and the constants klm are the Love

1 See Klinger et al. (2014) for a boundary value approach to GRAIL gravity field
recovery. 2 Aligned with the mean equator and dynamical equinox of J2000.0.
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