Icarus 257 (2015) 217-220

Contents lists available at ScienceDirect

Icarus

journal homepage: www.elsevier.com/locate/icarus

Hot CH₄ in the polar regions of Jupiter

Sang Joon Kim^{a,*}, Chae Kyung Sim^a, Jin Ho^a, Thomas R. Geballe^b, Yuk L. Yung^c, Steve Miller^d Yong Ha Kim^e

^a School of Space Research, Kyung Hee University, Yongin 446-701, South Korea

^b Gemini Observatory, 670 N. A'ohoku Place, Hilo, HI 96720, USA

^c Division of Geological and Planetary Sciences, Caltech, Pasadena, CA 91125, USA

^d Department of Physics and Astronomy, University College London, London WC1E 6BT, UK

^e Department of Astronomy and Space Science, Chungnam National University, Daejeon 305-764, South Korea

ARTICLE INFO

Article history: Received 19 January 2015 Revised 27 March 2015 Accepted 7 May 2015 Available online 15 May 2015

Keywords: Jupiter Spectroscopy Aurorae Infrared observations Atmospheres, composition

ABSTRACT

We have obtained 3.3–3.4- μ m spectro-images of Jupiter including CH₄ and H⁺₃ emission lines from both polar regions at the Gemini North telescope. We find that the peak of the 3- μ m CH₄ northern bright spot is located at ~200° (SysIII) longitude, ~20° west of the center of the 8- μ m north-polar bright spot, and does not coincide with the 3- μ m H⁺₃ bright spot. We derive high temperatures (500–850 K) from CH₄ rotational lines on the bright spots of both polar regions, above the 1- μ bar pressure level, while we find cooler temperatures (<350 K) over the 8- μ m spot. The intensity ratios of the various 3- μ m vibrational bands of CH₄ are roughly constant, indicating that the upper states of these bands are mostly populated by non-thermal excitation mechanisms, such as auroral particle precipitation and/or Joule heating, in contrast with the 8- μ m thermal emission.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

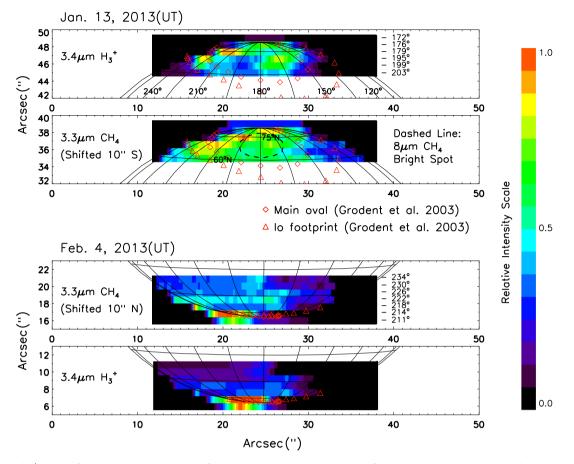
The region of the 8-µm north-polar brightening of CH₄, which is known to be warmer than the surrounding polar region (Kim et al., 1985; Drossart et al., 1993), has been observed to be stationary at 180° (SysIII) longitude since the early 1980s (Caldwell et al., 1983; Sada et al., 2003; Greathouse, private communication, 2014), whereas the south-polar bright spot has been observed to wander between 268°W and 96°E (SysIII) longitude in the south polar region (Caldwell et al., 1988). The morphology of the northern 8-µm CH₄ bright spot is similar to that of the 13-µm C₂H₂ polar emission (Sada et al., 2003), but it is very different from that of the H₃ auroral oval (Satoh et al., 1996) suggesting a significantly different excitation process for the two hydrocarbons than for H₃*.

The 3-µm polar (and presumably auroral) CH₄ emission was first reported in 1991 in ProtoCAM images of Jupiter (Kim et al., 1991) obtained at the NASA Infrared Telescope Facility. Nearly two decades later enhanced 3-µm CH₄ emission from a small area near the south pole was detected with CGS4 on the United Kingdom Infrared Telescope (UKIRT) (Kim et al., 2009). The interpretation of the 3-µm CGS4 CH₄ spectrum was hampered, however, by its low signal-to-noise (S/N) ratio. It was difficult to disentangle the v_3 , $v_3 + v_4 - v_4$, and $v_2 + v_3 - v_2$ lines of CH₄ from the complicated structure of the CH₄ bands, nor was it possible to compare the morphology of the 3-µm CH₄ emission with that of the 8-µm CH₄ polar brightening for the study of the excitation processes of these vibrational bands.

E-mail address: sjkim1@khu.ac.kr (S.J. Kim).

2. Observations and data reduction

In order to investigate the excitation processes of CH₄ in the auroral regions, we have obtained $R \sim 18,000$ spectra at significantly improved S/N ratio of the north and south polar regions in the $3.30-3.39\,\mu m$ interval using the Gemini Near-Infrared Spectrograph (GNIRS) with a 0.1 arcsec wide slit, at Gemini North on January 13, and February 4, 2013 (UT), respectively. The relative velocities of Earth and Jupiter were 20.60 and 26.26 km/s, respectively, which allowed the partial separation of the lines of the fundamental ν_3 band of CH_4 from their telluric counterparts. The spectral region observed also contained lines of the $v_3 + v_4 - v_4$ and $v_2 + v_3 - v_2$ bands (Kim and Geballe, 2005; Kim et al., 2014), which do not have significant telluric counterparts, although some of them are obscured by other telluric absorption lines. We oriented the 0.1 arcsec wide slit perpendicular to the central meridian and stepped in latitude from just off of each pole through each polar region, using 0.8 arcsec steps with an exposure time of 4 min for each latitude. The atmospheric seeing at 3.3 µm was 0.5–0.6 arcsec; thus the raw data are undersampled in latitude and highly oversampled in longitude (the array pixel dimension was 0.0513 arcsec on the sky). In the longitudinal direction the data were binned by ~0.5 arcsec to match the latitudinal sampling more closely. Since even at the lowest latitudes Jupiter covered no more than 25 arcsec within the 49 arcsec slit, it was possible to nod the telescope along the slit and observe Jupiter 100% of the time, using the sky portions in the preceding or succeeding spectro-images to subtract the sky emission. The limb positions were determined by where the intensities from the disk decrease rapidly, but limb brightening or darkening produces an uncertainty of \sim 0.3 arcsec in the limb positions. Taking seeing into account we estimate the total uncertainty in the longitudinal direction to be less than 1 arcsec. However, the *relative* positions of the H₃⁺ and CH₄ bright spots are accurate to much better than the seeing limit because they were measured on the same spectro-images.



Note

CrossMark

^{*} Corresponding author at: School of Space Research, Kyunghee University, Yongin, Kyunggido 446-701, South Korea.

Fig. 1. $3-\mu$ m CH₄ and H₃⁺ images of jovian polar regions extracted from their strong emission lines. Dates of the observations are as shown; and the north and south polar figure panels for the CH₄ emissions are shifted 10 arcsec southward and northward, respectively, for clear comparisons with the corresponding H₃⁺ figure panels. The central meridian longitudes (CMLs) at the times of the observations are shown at right; in the assembled images the stripes have been coordinate-transformed so that CMLs are 180° (SysIII). The position of the north-polar bright emission by hydrocarbons is shown (e.g., http://photojournal.jpl.nasa.gov/catalog/PlA13699; Sada et al., 2003) as well as the boundaries of the lo footprints and the main ovals observed in the ultraviolet (Grodent et al., 2003; part of the boundary of the southern region is over or near the horizon). Dark areas are where data are not available or intensities are relatively very low. The H₃⁺ and CH₄ emission intensities are normalized to the brightest regions in the images to produce a common color scale (shown at right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3. Morphology and temperatures

Fig. 1 contains 3.3-µm CH₄ and 3.4-µm H₃⁺ images of Jupiter extracted from strong CH₄ and H₃⁺ emission lines in the spectra. The CH₄ lines are shown in Fig. 2; a complex of strong 3.4-µm H₃⁺ lines (not shown in Fig. 2; see Fig. 6 of Kim et al. (2010) for example), which do not overlap with strong CH_4 lines, are used to construct the H_3^+ images in Fig. 1. The latitudinal stripes observed at different times are shifted and are stretched or compressed so that the longitudes for each stripe align and the central meridian is 180° (SysIII). The CMLs at the times of the observations, and the Io footprints and the main ovals observed in the ultraviolet (Grodent et al., 2003) are shown. As can be seen, the brightest spot in the $3.3-\mu m$ CH_4 image of the north polar region, at longitude 200° and latitude 75°, is \sim 20° west of the center of the 8-µm CH₄ bright spot (thick dashed line). In addition, the overall shapes of the two bright regions differ significantly; the 3.3-um bright region is more extended. The 3.3-µm CH₄ bright region also is not perfectly coincident with the H₃⁺ bright spot, whose center is located at about longitude 215°. The southern CH₄ bright spot appears to be close to the H₃⁺ bright spot, but the relative locations are not certain since most of the southern auroral CH₄ and H⁺₃ emission occurs near or over the south polar horizon.

Fig. 2a and b shows spectra extracted from the northern and southern 3.3- μ m bright regions. The wavelength ranges where v₃, v₃ + v₄ - v₄, and v₂ + v₃ - v₂ lines dominate the emission from Jupiter, can be seen in the model spectra near the bottom of each panel. We derive temperatures from the rotational lines of the CH₄ bands using the following considerations. Radiative transfer programs that simulate the fluorescent emission of the 3- μ m bands of CH₄ have been developed for analysis of jovian spectra (Drossart et al., 1999; Kim et al., 2009, 2010, 2014). For the CH₄ molecular line list, we adopt the HITRAN2012 database (Rothman et al., 2009). Since CH₄ is a spherical top molecule, its dipole moment is small, resulting in very low *rotational* Einstein A coefficients. For the rotational deexcitation rates in the auronal

regions. Thus one may assume that the rotational-state populations of CH_4 are in LTE. The populations of excited vibrational states of CH_4 are probably not controlled by collisions, however, due to the high values of the *vibrational* Einstein A coefficients (Kim et al., 2014) compared to collision rates. Therefore, regardless of the energy sources (Wong et al., 2000, 2003) over the auroral regions, the rotational populations of the CH_4 states are governed by LTE, and the rotational structures of the CH_4 bands can be constructed by radiative transfer equations with Planckian source functions. The rotational temperatures derived from the intensities of individual lines of the various 3-µm bands of CH_4 thus reflect the local atmospheric temperatures.

In order to determine the nature of the vibrational band emission, we first constructed synthetic spectra at different rotational temperatures to be compared with the observations, and found the best-fit rotational temperatures of 500 ± 50 and 850 ± 70 K for the northern and southern bright spots, respectively, as presented in Fig. 2a and b. These temperatures are significantly higher than those derived from surrounding non-auroral zones and equatorial regions (Kim et al., 2014), and are even higher than the temperatures (<350 K) derived from the 3.3-µm spectra obtained at the location (160–200° (SysIII) longitude, and 60–80°N latitude) of the 8-µm bright spot (spectrum and fit not shown here).

We then examined the intensity ratios $v_3/v_3 + v_4 - v_4$, and $v_3/v_2 + v_3 - v_2$ as well as the intensities of these bands in order to determine whether the observed vibrational band emission from them is thermal or nonthermal. As seen in Fig. 3, the intensity ratios of the vibrational bands are relatively *constant* compared with the intensity profiles themselves in both polar regions. This is significant, because radiative excitation (by sunlight) of the v_3 state and of the $v_3 + v_4$ and $v_2 + v_3$ states occurs at different wavelengths (3.3 µm and 2.3 µm, respectively). Since the spectrum of thermal radiation is determined by the blackbody temperature, it is not plausible that local thermal radiation can produce the observed uniform intensity ratios in the polar regions, where the temperatures, and hence the ratio of thermal radiation at 3.3 µm and 2.3 µm, vary drastically from Download English Version:

https://daneshyari.com/en/article/8136109

Download Persian Version:

https://daneshyari.com/article/8136109

Daneshyari.com