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a b s t r a c t

Several studies have found that synchronously-rotating Earth-like planets in the habitable zones of
M-dwarf stars should exhibit an ‘‘eyeball’’ climate pattern, with a pupil of open ocean facing the parent
star, and ice everywhere else. Recent work on eccentric exoplanets by Wang et al. (Wang, Y., Tian, F., Hu,
Y. [2014b] Astrophys. J. 791, L12) has extended this conclusion to the 2:1 spin–orbit resonance as well,
where the planet rotates twice during one orbital period. However, Wang et al. also found that the 3:2
and 5:2 half-odd resonances produce a zonally-striped climate pattern with polar icecaps instead. Unfor-
tunately, they used incorrect insolation functions for the 3:2 and 5:2 resonances whose long-term time
averages are essentially independent of longitude.

This paper presents the correct insolation patterns for eccentric exoplanets with negligible obliquities
in the 0:1, 1:2, 1:1, 3:2, 2:1, 5:2, 3:1, 7:2, and 4:1 spin–orbit resonances. I confirm that the mean insola-
tion is distributed in an eyeball pattern for integer resonances; but for half-odd resonances, the mean
insolation takes a ‘‘double-eyeball’’ pattern, identical over the ‘‘eastern’’ and ‘‘western’’ hemispheres.
Presuming that liquids, ices, clouds, albedo, and thermal emission are similarly distributed, this has
significant implications for the observation and interpretation of potentially habitable exoplanets.

Finally, whether a striped ball, eyeball, or double-eyeball pattern emerges, the possibility exists that
long-term build-up of ice (or liquid) away from the hot spots may alter the planet’s inertia tensor and
quadrupole moments enough to re-orient the planet, ultimately changing the distribution of liquid and
ice.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Recent work suggests that planets at �0.1 Astronomical Unit
from M-type stars may be habitable (Dressing and Charbonneau,
2013; Gaidos, 2013; Kopparapu, 2013; Tuomi et al., 2014, etc.).
So close to a star, however, gravitational tides are expected to lock
a solid planet into a spin–orbit resonance state such that either end
of its principal axis of least inertia (or its intermediate axis of iner-
tia in certain cases) always points toward its sun at perihelion.

Then the planet’s orbital period P is an integer or half-odd-
integer multiple p of its rotation period; thus p ¼ x=n, where x
is the planet’s rotation rate and n ¼ 2p=P is its ‘‘mean motion’’,
or average orbital angular velocity. For example, our Moon
rotates once every 27 days, the same period as its orbit, so that it
always keeps the same face toward Earth; in fact, most of the
major moons in the Solar System are in the same ‘‘synchronous’’
p ¼ 1 resonance. In contrast, the planet Mercury is in the

‘‘sesqui-synchronous’’ p ¼ 3=2 resonance, such that it rotates three
times during every two orbits.

The probability of finding a moon or planet in any particular
resonance depends on its orbital eccentricity e (e.g., Dobrovolskis,
1995, 2007). For example, the synchronous p ¼ 1 resonance is
the only end state possible for planets in circular orbits, where e
vanishes. For a planet in this synchronous state, the hemisphere
facing the star would be in permanent sunlight, while the opposite
hemisphere would be in eternal night. Climate models suggest that
an Earth-like planet in this situation would experience an ‘‘eyeball’’
climate pattern, with a pupil of open ocean facing the parent star,
and ice everywhere else (Pierrehumbert, 2011; Edson et al., 2011,
2012; Heng and Vogt, 2011; Hu and Yang, 2014, etc.).

However, many extra-solar planets have quite eccentric orbits
(e J 0:2). For such exoplanets, the sesqui-synchronous p ¼ 3=2
state or a higher-order resonance is more likely than the synchro-
nous p ¼ 1 state. It is not obvious what sort of climate to expect for
these non-synchronous spin–orbit resonances.

Recently, Wang et al. (2014a,b) have used a General Circulation
Model to simulate the climate on planets orbiting an M-dwarf star
with eccentricity e ¼ 0:40, but zero obliquity, in the p ¼ 1, 3/2, 2,
and 5/2 spin–orbit resonances. They found that the p ¼ 1 and
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p ¼ 2 resonances both produce an eyeball climate pattern, but that
the p ¼ 3=2 and p ¼ 5=2 resonances both produce a zonally-striped
climate pattern with polar icecaps instead. Unfortunately, they
used incorrect insolation functions for the 3/2 and 5/2 resonances
whose long-term time averages are essentially independent of
longitude.

This paper presents the correct insolation patterns for exopla-
nets again with e ¼ 0:40, but negligible obliquities, in the p ¼ 0,
1/2, 1, 3/2, 2, 5/2, 3, 7/2, and 4 spin–orbit resonances. I confirm that
the mean insolation is distributed in an eyeball pattern for integer
resonances; but for half-odd resonances, the mean insolation takes
a ‘‘double-eyeball’’ pattern, identical over the ‘‘eastern’’ and ‘‘wes-
tern’’ hemispheres. For such planets, the climate may assume a
similar double-eyeball pattern.

2. Sub-solar point

By Kepler’s second law (equivalent to conservation of angular
momentum), a planet travels around its parent star (or equiva-
lently, its sun travels around the planet) at an angular velocity

dm=dt ¼ ‘=r2; ð1Þ

where the constant

‘ ¼ na2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

ð2Þ

is the specific orbital angular momentum of the planet, and

r ¼ a� ae2

1þ e cos m
ð3Þ

is the varying distance between the star and planet.
Here n ¼ 2p=P is the planet’s mean motion (time-averaged

angular velocity), P is its orbit period (28 days in the case of GJ
667Cc used by Wang et al., 2014a,b), a is the semi-major axis of
its orbit, e is its orbital eccentricity, and m is the planet’s true anom-
aly: its longitude along its orbit, measured forward from perihe-
lion. From the above relations, one can find the elapsed time t
since perihelion explicitly as a function of m, or find m implicitly
as a function of t.

Panel a of Fig. 1 plots the resulting time variation of the orbital
angular velocity dm=dt for two whole orbits. The ordinate (left
scale) gives _m � dm=dt in units of n, while the abscissa shows the
elapsed time t since perihelion, in units of P (bottom scale), or as
the mean anomaly nt in degrees of arc (top scale). Note that _m=n

ranges from just over 5/2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ eÞ=ð1� eÞ3

q
� 2:5459

� �
to just

under 1/2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� eÞ=ð1þ eÞ3

q
� 0:4676

� �
and back again during

each orbit.
As seen from the surface of a planet rotating with angular veloc-

ity x, the sub-solar point lies at a longitude /� ¼ m�xt along the
equator. In a spin–orbit resonance, where the sub-solar point lies
on the axis of least (or intermediate) inertia at each perihelion,
/� must be a strictly periodic function of time, with a period of
one or two orbits. Therefore x must be an integer or half-odd-
integer multiple of the mean motion n.

Panels b–j of Fig. 1 plot /� versus time for the spin orbit reso-
nances with p � x=n = 0, 1/2, 1, 3/2, 2, 5/2, 3, 7/2, and 4, respec-
tively; note that my origin of longitude differs by ±180� from
that of Wang et al. (2014a,b), so that the planet is at perihelion
whenever /� ¼ 0. Panel b for the null resonance p ¼ 0 (the antide-
rivative of panel a) shows that /� increases monotonically by 360�
each orbit, except when it wraps around the ‘‘date line’’ at
longitudes of ±180�.

Panel c for the ‘‘semi-synchronous’’ resonance p ¼ 1=2 shows
that /� generally increases by 180� per orbit, but lingers long near

+90� on one orbit, and �90� on the next; in fact, /� makes small
retrograde loops with an amplitude of �0�.84 during the intervals
when dm=dt < n=2. For comparison, panel d for the synchronous
state p ¼ 1 shows that /� librates about zero with a large ampli-
tude of �46�.76.

In contrast, panel e for the sesqui-synchronous resonance
p ¼ 3=2 shows that /� generally decreases by 180� per orbit, but
makes large prograde loops with an amplitude of �22�.67 about
/� ¼ 0 or ±180� on alternating orbits. Panel f for the p ¼ 2 reso-
nance shows that /� now generally decreases by 360� each orbit,
but makes modest prograde loops about /� ¼ 0 with an amplitude
of �7�.73.

Panel g of Fig. 1 for the p ¼ 5=2 spin–orbit resonance shows that
/� makes tiny prograde loops with an amplitude of only �0�.17
about /� ¼ 0 and ±180� on alternating orbits, during the brief
intervals when dm=dt > 5n=2. For comparison, panel h for the
p ¼ 3 resonance shows that /� decreases monotonically (except
when it wraps around the date line), slowing only slightly near
/� ¼ 0 at perihelion passages.

Panel j for p ¼ 4 also shows similar behavior to panel h, while
panel i for p ¼ 7=2 shows a slight slowing near /� ¼ �180� as well
as near /� ¼ 0 at alternating perihelion passages. Note that all of
the panels of Fig. 1 (except panel a) are point-symmetric about
the center nt ¼ 360�, /� ¼ 0.

Compare my Fig. 1 with Fig. 1 of Wang et al. (2014b). For the
synchronous state p ¼ 1, my panel d agrees with their panel a.
For the sesqui-synchronous resonance p ¼ 3=2, however, my panel
e disagrees slightly with their panel c; their curve is not quite
periodic, as spin–orbit resonance requires, but instead rises by
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Fig. 1. Panel a: Inertial angular speed dm=dt of the planet around its sun, or of its sun
around the planet, versus elapsed time t since perihelion. Panels b–j: Longitude of
the sub-solar point on the planet’s equator versus time for various resonant values
of the planet’s rotation rate x ¼ pn, where n ¼ 2p=P is the planet’s mean motion
and P is its orbital period. Panel b: p ¼ 0. Panel c: p ¼ 1=2. Panel d: p ¼ 1. Panel e:
p ¼ 3=2. Panel f: p ¼ 2. Panel g: p ¼ 5=2. Panel h: p ¼ 3. Panel i: p ¼ 7=2. Panel j:
p ¼ 4.
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