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a b s t r a c t

Jupiter’s moon Europa has a thin icy crust which is decoupled from the mantle by a subsurface ocean. The
crust thus responds to tidal forcing as a deformed membrane, cold at the top and near melting point at
the bottom. In this paper I develop the membrane theory of viscoelastic shells with depth-dependent rhe-
ology with the dual goal of predicting tidal tectonics and computing tidal dissipation. Two parameters
characterize the tidal response of the membrane: the effective Poisson’s ratio �m and the membrane spring
constant K, the latter being proportional to the crust thickness and effective shear modulus. I solve mem-
brane theory in terms of tidal Love numbers, for which I derive analytical formulas depending on K; �m, the
ocean-to-bulk density ratio and the number k�2 representing the influence of the deep interior. Membrane
formulas predict h2 and k2 with an accuracy of a few tenths of percent if the crust thickness is less than
one hundred kilometers, whereas the error on l2 is a few percents. Benchmarking with the thick-shell
software SatStress leads to the discovery of an error in the original, uncorrected version of the code that
changes stress components by up to 40%. Regarding tectonics, I show that different stress-free states
account for the conflicting predictions of thin and thick shell models about the magnitude of tensile stres-
ses due to nonsynchronous rotation. Regarding dissipation, I prove that tidal heating in the crust is
proportional to ImðKÞ and that it is equal to the global heat flow (proportional to Imðk2Þ) minus the
core-mantle heat flow (proportional to Imðk�2Þ). As an illustration, I compute the equilibrium thickness
of a convecting crust. More generally, membrane formulas are useful in any application involving tidal
Love numbers such as crust thickness estimates, despinning tectonics or true polar wander.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The few facts about the interior of Jupiter’s moon Europa that
really matter for tides come down to a simple formula: ‘a thin
icy crust floating on a subsurface ocean’. The tidal response of
Europa is not unlike a water balloon thrown in the air. The balloon
membrane is stretched around the deformed water mass and tries
to put it back into its initial shape without much success. Regard-
ing tidal effects, Europa is thus more a ‘membrane world’ than an
‘ocean world’ (McKinnon et al., 2009). The term ‘membrane para-
digm’ in the title is, of course, a tongue-in-cheek reference to the
black hole model in which a fictitious membrane located just out-
side the horizon is endowed with conductivity and other physical
properties (Price and Thorne, 1988).

The existence of an ocean within Europa is nearly certain since
the Galileo spacecraft detected a magnetic induction signature that
can only be explained by a near-surface conductive layer, most
likely a saline ocean (Khurana et al., 1998; Khurana et al., 2009).

Close-up pictures by Galileo also revealed vast chaotic provinces
looking like terrestrial pack ice (Carr et al., 1998; Collins and
Nimmo, 2009). Furthermore, detailed modeling of tectonic features
suggests that they are caused, at least in part, by tidal flexing of a
thin floating ice shell (Hoppa et al., 1999b; Kattenhorn and
Hurford, 2009). A key prediction of this model was recently verified
when Roth et al. (2014) detected water vapor above Europa’s south
pole at the apocenter of the orbit.

On Europa, tides and ocean are mutually dependent. On the one
hand, the subsurface ocean partially decouples the crust from the
deep interior and thus increases tidal deformations by a factor of
20 or more, depending on the elasticity of the mantle (Moore
and Schubert, 2000; Sotin et al., 2009). On the other, tidal heating
within the crust is larger than radiogenic heat from the mantle and
is probably necessary to keep the ocean from freezing (Hussmann
et al., 2002; Spohn and Schubert, 2003). Tides are thus an essential
ingredient in modeling internal structure and thermal evolution.
The other important domain of application of tides is the
prediction of the numerous tectonic features which are mainly
attributed to eccentricity tides, with possible contributions from
obliquity tides (plus spin pole precession), physical librations and
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nonsynchronous rotation (Kattenhorn and Hurford, 2009; Rhoden
and Hurford, 2013 and references therein).

The role of the ocean in tides is all the more important because
the crust is thin (in a sense precised below), with the result that the
crust offers little resistance to the changing tidal bulge of the
ocean. Gravity data constrain the total water layer thickness (crust
plus ocean) to be less than 170 km (Anderson et al., 1998) so that
the crust thickness itself must be less than 10% of Europa’s radius.
Various methods have been applied to infer crust thickness, yield-
ing a wide range of estimates from less than one kilometer to a few
tens of kilometers (see reviews by Billings and Kattenhorn (2005),
Nimmo and Manga (2009) and McKinnon et al. (2009)). In any case,
the highest estimates are no more than a few percents of the sur-
face radius. From the point of view of ocean-surface exchanges, a
20 km-thick crust is certainly not thin. Mechanics, however,
require a less stringent criterion: thin shell theory is typically con-
sidered a good model for the deformation of a shell if its thickness
is less than 5–10% of the body’s radius (Novozhilov, 1964; Kraus,
1967). This constraint depends on the wavelength of deformations
and is thus considerably relaxed for tidal deformations which have
a wavelength equal to half the circumference (Beuthe, 2008). If
deformations have a very long wavelength compared to shell
thickness, thin shell theory takes a simpler form called the
membrane theory of shells. Confusingly, planetologists call the latter
approach the thin shell approximation.

All tidal effects can be predicted by computing deformations of
the whole satellite with the theory of viscoelastic-gravitational
deformations (e.g. Saito, 1974). The fundamental equations of this
theory can be solved in different ways depending on the approxi-
mations made: propagation matrix method if incompressible body
and static tides (Segatz et al., 1988; Moore and Schubert, 2000;
Roberts and Nimmo, 2008; Jara-Orué and Vermeersen, 2011),
numerical integration if compressible body and static tides
(Wahr et al., 2006; Wahr et al., 2009) or dynamical tides (Tobie
et al., 2005). While these codes are in principle accurate, they also
have some drawbacks. First, they require a certain expertise, espe-
cially if one wants to modify the configuration of the layers (for
example adding a fluid core). Second, they are not publicly avail-
able except SatStress (Wahr et al., 2009). Third, their results have
not yet been systematically compared to each other as it was done
for Earth deformations (Spada et al., 2011) so that programming
errors remain a possibility. Fourth, codes based on numerical inte-
gration typically diverge if tidal frequencies are too low or if solid
layers are too soft.

In contrast with the ‘black box’ approach of viscoelastic-gravita-
tional codes, the membrane theory of elastic shells provides simple
analytical formulas for tidal stresses (Vening-Meinesz, 1947). It has
thus been very popular to predict tidal tectonic patterns (e.g. Leith
and McKinnon, 1996; Greenberg et al., 1998; Kattenhorn and
Hurford, 2009). Why not extend it to other applications? The prob-
lem with membrane theory in its present form is that it is
restricted to an elastic and homogeneous crust. Assuming elasticity
makes it impossible to compute viscoelastic tidal deformations and
tidal dissipation. Requiring homogeneity is problematic too
because the rheology of ice changes with depth. The viscosity of
ice sensitively depends on the local temperature of the ice and thus
varies by several orders of magnitude between the cold surface and
the bottom of the icy shell, where it is at its melting point.
Therefore, the elastic thickness of the membrane has a non-trivial
relation to the total thickness of the crust, especially if crustal ice is
convecting.

In this paper, I extend the membrane theory of shells to
viscoelastic shells with depth-dependent rheology. The main goal
is to derive ready-to-use formulas for viscoelastic tidal stresses
and tidal dissipation. I choose to reformulate the membrane
approach in terms of the tidal Love numbers describing the tidal

response of the body (Love, 1909), for which I derive analytical for-
mulas in the membrane approximation. Using Love numbers offers
three advantages:

(1) Universality: tidal Love numbers appear in many applica-
tions for which a theoretical framework already exists. It is
unnecessary to develop a parallel formalism in the mem-
brane approach.

(2) Flexibility: the influence of the internal structure can be ana-
lyzed by computing the Love numbers for various models
without changing the rest of the formalism.

(3) Consistency: the membrane approach clearly appears as a
limiting case of the more complete theory of viscoelastic-
gravitational deformations. As an illustration, I explain con-
flicting predictions about the magnitude of nonsynchronous
stresses.

Love numbers can be measured with an orbiter (h2 and k2, Wu
et al. (2001); Wahr et al. (2006)), from multiple flybys (k2 only,
Park et al. (2011)) or with a lander (h2; l2 and k2, Hussmann et al.
(2011)). Table 1 gives a list of possible applications of tidal Love
numbers, references where formulas in terms of Love numbers
can be found, and the sections where the subject is discussed in
this paper. The table does not mention one important application:
benchmarking numerical codes designed to compute Love num-
bers and viscoelastic stresses. I will show that membrane formulas
are accurate enough to reveal a previously undetected error in the
original, uncorrected version of the SatStress code used to predict
tidal tectonics (the error is now fixed in the online version).

2. Love numbers in thick shell theory

I will benchmark the membrane approach with analytical and
numerical methods based on the theory of viscoelastic-gravitational
deformations. This approach is sometimes called ‘thick shell theory’
when the outer shell is lying on top of a liquid or quasi-fluid layer.
Before describing the benchmarks, I will summarize the important
features that an interior model of Europa should have regarding
tidal deformations.

2.1. Interior structure of Europa

There are only two observational constraints on the interior
density: the mean density (see Table 2) and the axial moment of
inertia factor (Anderson et al., 1998). Therefore, inferences on the
density stratification cannot go beyond two or three layers.
Reviewing the constraints on the density structure, Schubert
et al. (2009) conclude that Europa has (1) a metallic core having
a radius between 13% and 45% of the surface radius, (2) a silicate
mantle, and (3) a water ice-liquid outer shell which is
80–170 km thick (the density contrast between ocean and icy shell
is unconstrained).

Table 1
Tidal Love numbers: applications.

Topic h2 l2 k2 Reference In this paper

Crust thickness U U Wahr et al. (2006) Section 4.4
Tidal tectonics U U Wahr et al. (2009) Section 6.2
Despinning

tectonics
U U Beuthe (2010) –

Local dissipation U U Beuthe (2013) Section 7.2
Global heat flow U Segatz et al. (1988) Section 7.4
True polar wander U U Matsuyama et al.

(2014)
Section 8
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