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a b s t r a c t

The analysis of size–frequency distributions is common for studying planetary bodies with applications for craters and
blocks. However, the common method of using a linear regression on cumulative block distributions is subject to sys-
tematic errors that can lead to an underestimation of uncertainties and/or a biasing of the slope. The power-law fitting
procedure proposed by Clauset et al. is applied for the first time to a block or crater dataset: the global block survey of
Asteroid 25143 Itokawa. Along with new results, a discussion of the importance on the preparation and presentation of
block distribution statistics is also given in the context of asteroid block populations. Finally, different block sizing
methods are evaluated and demonstrate the advantages of a mass-driven approach rather than a size-driven approach
for a power-law fitting.

� 2014 Published by Elsevier Inc.

1. Introduction

The analysis of size–frequency distributions is widely used in the planetary sci-
ences to understand geological processes. Examples of these applications include
studies of asteroid populations and their collisional histories (e.g. Davis et al.,
2002; Bottke et al., 2005; Mazrouei et al., 2014), cratering processes and aging
(e.g. McEwen and Bierhaus, 2006) and block distributions (e.g. Thomas et al.,
2002; Küppers et al., 2012), to name a few. The basis of these analyses is that many
natural phenomenon follow power law distributions of the form

N / R�a

where N is the number of objects expected in a size range R where a is commonly
referred to as the slope of the distribution or the scaling parameter. Differences in
the scaling parameter are used to differentiate between geological processes. The
methodology used for the analysis often makes use of the linearization

log N / �a log R:

Two analysis approaches have been detailed by the Crater Analysis Techniques
Working Group (1979) – differential (or relative) analyses and cumulative analyses.
Differential analyses are performed by grouping the objects to be counted (i.e.,
blocks or craters) into size bins. Cumulative analyses are performed by calculating
the number of objects greater than a given size. Additionally, the cumulative distri-
bution, which is the integral of the differential distribution, can be plotted without
binning and often shows a smoother behavior with increasing size. This smoother
behavior often makes cumulative distributions the preferred choice for comparative
studies.

As a specific example, block populations generally appear to follow these
power-law distributions where the probability of selecting a block of a certain size,

x, is given as PðxÞ / x�a where a is the scaling parameter mentioned previously. If
the differential distribution follows such a power-law, the cumulative distribution
function (CDF) will also follow a power law as they are related through an integral.
The scaling parameter is related to the slope of the cumulative distribution by
S ¼ aþ 1, where S is the slope of the CDF. Uncertainties for these block counts
are calculated assuming Poisson statistics with an uncertainty on N blocks given
by �

ffiffiffiffi
N
p

.
An example of an unbinned cumulative distribution for blocks on Itokawa is

shown in Fig. 1 (Mazrouei et al., 2014). Blocks were defined as rocks and features
with distinctive positive relief that are larger than a few meters in size. The blocks
were fitted with ellipses, where the semi-major and semi-minor axes provided long
and short axes for each block. Most blocks larger than 5 m along their major-axis
were mapped but blocks below 6 m are not fully represented due to image resolu-
tion limitations. Therefore, 6 m was the lower size limit used in calculating the
least-squares fit to these data. This limit was chosen through qualitative evaluation
of several linear fits to the cumulative distribution. For this study, the unknown ver-
tical axis of each block was assumed to be equal to the horizontal minor axis of the
block. The diameter of a sphere whose volume was equivalent to that of an ellipsoid
defined by the length of these minor and major axes was computed and used to
quantify the measured block size. This approach was used to approximate block
size by a mass-related value for ease in comparison with laboratory studies. A total
of 1433 blocks were measured over the entire surface area of 0:4011 km2. Here the
slope of �3:5� 0:1 is taken to be representative of the geological process that cre-
ated and modified the P6 m block population.

2. Limitations of the standard analysis technique

Inherent in the standard least-squares fitting to a dataset that is commonly
used in the literature (e.g., Thomas et al., 2002; Michikami et al., 2008; Küppers
et al., 2012; Mazrouei et al., 2014), is the assumption of the statistical independence
of the dataset on a point-by-point basis. For a CDF, the assumption of independence
fails as each point is related to the previous points, with the amount of correlation
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decreasing with separation between the points. For example, for a size-ordered,
unbinned dataset of the type shown in Fig. 1, where the size of item i is less than
the size of item ðiþ 1Þ, the CDF is calculated by the recursive relation:

NðiÞ ¼ Nðiþ 1Þ þ 1;

where NðiÞ is the number of items of size greater or equal to the size of the ith item.
Clearly as a relationship exists that relates each value of NðiÞ to any other value with
differing i, the values of N are not independent and the least-squares approach and
its subsequent error analysis is not correct. The assumption of statistical indepen-
dence will result in an under-estimation of the uncertainties in the least-squares
fit to the data set.

Additional problems exist with the standard approach. For example, Fig. 1
exhibits a roll-over at smaller scales. This is generally a feature of these datasets
as, at some scale, all such distributions will eventually depart from linear. The
departure can be caused by incompleteness of the dataset as in Fig. 1, where image
coverage and resolution limitations are the cause of the roll-over. Alternatively, the
roll-over can be caused by a change in the physical processes that are dominant at
those scales. The location of the start of the roll-off is generally chosen by visual
inspection, based on image resolution or semi-quantitatively by inspection of var-
ious fits. This approach causes two potential problems. The first is due to the biased
nature of this process – two investigators with identical datasets are not guaranteed
to achieve identical results. Additionally, the smaller sizes in the distribution tend
to control the fit due to the smaller uncertainties associated with the larger block
count – making the selection of this point critical to the fit results. An analytical
method for choosing the minimum block size of the distribution and assessing
the uncertainty in its determination would improve both uncertainty estimation
of the fit and intercomparison between analyses.

Bierhaus (2004) points out a number of additional problems with typical anal-
ysis approaches and recommends a differential approach. The first problem is due
to a common non-ideal implementation of linearizing the distribution. Although
a good estimate of the uncertainty in a count is symmetric about the count, when
the problem is linearized, these uncertainties are not symmetric. Most fitting rou-
tines assume Gaussianly distributed symmetric errors leading to erroneous results
and therefore, a non-linear fit in non-log–log space is recommended. Bierhaus
(2004) also states that this can also be violated for counts < 10 where the Poisson
distribution no longer approximates a Gaussian distribution. Another point that
should be mentioned but is not discussed in the remainder of this paper is that
of systematic errors. Bierhaus (2004) concludes that these uncertainties can domi-
nate at the small scales and high counts where Poisson statistics provides high con-
fidence. This is a consequence of statistical errors �

ffiffiffiffi
N
p

and systematic errors � N.
As systematic error sources differ greatly depending on the data available, how it
was collected and how it was assessed – we leave this as a cautionary reminder
for future studies. The Bierhaus (2004) method is recommended over fitting to
the CDF but has the disadvantage of several requirements: selection of bin sizes,
selection of the minimum bin size and an approach for dealing with empty bins.

The CDF, by virtue of being statistically related on a point-to-point basis can
mask distributions that are not good fits to power-laws. In fact, it is this well-be-
haved nature of a CDF that makes them popular. Clauset et al. (2009), who recog-
nized the above problems with CDF analysis, provides examples from various
disciplines that appear as good linear fits to a CDF but the underlying distributions
are non power-law distributions such as log-normal, or exponential distributions.
Additionally, they provide a methodology for fitting these distributions that ac-
counts for the problems previously identified. In this paper, we present a summary
of the techniques proposed by Clauset et al. (2009) for the analysis of size–fre-
quency distribution data. We find these techniques applicable to the analysis of
blocks or craters in the planetary sciences and apply them for the first time for these
purposes. As a test of the approach we reevaluate the block size–frequency distri-
bution for Itokawa and compare the results with a previous analysis (Mazrouei

et al., 2014). Additionally, we evaluate a variety of block sizing approaches and eval-
uate their impact on the goodness-of-fit to a power-law.

3. Revised method

Clauset et al. (2009) proposed a three-step procedure as an alternative to linear
regression methods; we use that method and notation in this work. The three steps
are:

1. Estimate xmin and the scaling parameter a.
2. Calculate the goodness-of-fit between the data and the power law in order to

provide an assessment of the power-law hypothesis.
3. Compare the power-law with alternative hypotheses via a likelihood ratio test.

Only steps 1 and 2 will be covered here as we have found good agreement with
our datasets and power-law behavior.

3.1. Estimation of the power-law parameters

The general form of the PDF is a probability distribution function that integrates
to 1 over the interval x > xmin:

pðxÞ ¼ a� 1
xmin

x
xmin

� ��a

:

To apply this model PDF to a dataset, it must be scaled by the number of blocks with
x > xmin . Power-law fitting results are expressed as the estimate, â, of the true scaling
parameter a and the standard error r of â, along with the minimum block size xmin

and its standard error rxmin
. To estimate a, the method of maximum likelihood is

used. Assuming that the distribution follows a power law then the estimate of the
scaling parameter, â, can be obtained as

â ¼ 1þ n
Xn

i¼1

ln
xi

xmin

" #�1

;

with standard error given as

râ ¼
â� 1ffiffiffi

n
p þ terms of order ð1=nÞ:

Here n is the number of objects (the sample size) used to calculate â. The value of n is
known a priori but xmin is not. Estimating a and xmin is done by calculating â for every
possible xmin and evaluating the goodness of the fit to the model data. Clauset et al.
(2009) tested a variety of methods and suggest the best method to be a Kolmogorov–
Smirnov (KS) statistic that calculates the difference between the model and the data-
set. Minimization of the KS statistic then provides the best estimates of a and xmin .

Synthetic datasets for values of x > xmin are easily generated using the calcu-
lated power-law model for the data as a probability distribution function and ran-
domly calculating n, where n is the number of values in the dataset where x > xmin.
For x < xmin , the approach is not as straightforward. The power-law estimate de-
pends on xmin , therefore for the synthetic data to generate rational and independent
results, the non power law distribution must also be modeled. Here we follow
Clauset et al. (2009), where they use the actual data set to randomly select values
below xmin to guarantee a similar roll-over below xmin . Other approaches could be
used below xmin , for example, the data could be fitted with a simple functional form
that is continuous with the power-law model at xmin and whose derivative is also
continuous at xmin; samples could be randomly selected using this distribution
and then scattered with Poisson statistics.

The generation of synthetic datasets can be used to estimate the confidence
interval for xmin. The standard deviation of the estimates for xmin for each synthetic
dataset provides this assessment.

3.2. Assessment of the fit to a power law

Having calculated the best estimate of the power law from the dataset, is the
power law fit a good model? The recommended approach is to use a power law
hypothesis based on the estimates of xmin and a to generate random power law
(synthetic) datasets and assess the goodness-of-fit to the power law based on com-
paring the synthetic dataset to its estimated power law. If the ratio of synthetic data
that have a KS distance, D, greater than the D of the estimated power law is greater
than 0.1, as suggested by Clauset et al. (2009), then the estimated power-law model
would be considered a good fit to the dataset. If the departures are significantly lar-
ger for the dataset, then the model should be questioned. A large probability
(p > 0.1) suggests a good fit while a small probability suggests that random fluctu-
ations from the power law are not adequate to explain the dataset and alternative
forms may be more appropriate.

The number of synthetic datasets tested impacts the uncertainty in the calcu-
lated probability. An empirically derived ‘‘rule-of-thumb’’ suggested by Clauset
et al. (2009) for the uncertainty (�) in the probability (p) is

Fig. 1. The global cumulative size–frequency distribution of blocks on Itokawa as a
function of block size using the equivalent spherical radius sizing method.
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