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a b s t r a c t

Dissipation of tidal energy is an important mechanism for the evolution of outer Solar System satellites,
several of which are likely to contain subsurface oceans. We extend previous theoretical treatments for
ocean tidal dissipation by taking into account the effects of ocean loading, self-attraction, and deforma-
tion of the solid regions. These effects modify both the forcing potential and the ocean thicknesses for
which energy dissipation is resonantly enhanced, potentially resulting in orders of magnitude changes
in the dissipated energy flux. Assuming a Cassini state obliquity, Enceladus’ dissipated energy flux due
to the obliquity tide is smaller than the observed value by many orders of magnitude. On the other hand,
the dissipated energy flux due to the resonant response to the eccentricity tide can be large enough to
explain Enceladus’ observed heat flow.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Several lines of evidence suggest the presence of subsurface
oceans in icy satellites of the outer Solar System. On Europa, the
detection of an induced magnetic field has been explained as due
to a layer of liquid salty water a few kilometers beneath the icy
surface (Kivelson et al., 2000; Zimmer et al., 2000; Hand and
Chyba, 2007). Similar to Europa, Ganymede and Callisto also exhi-
bit an induced magnetic field, indicating the presence of a liquid
salty water layer beneath their surfaces. However, the conducting
layer must be a few hundreds of kilometer beneath the surface
(Zimmer et al., 2000; Kivelson et al., 2002). On Titan, the detection
of a Schumann-like resonance has been explained as due to a sub-
surface, conductive, liquid layer (Béghin et al., 2010). Similarly,
estimates of the mean moment of inertia (Bills and Nimmo,
2011; Baland et al., 2011) and the degree-2 tidal Love number
(Iess et al., 2012) suggest the presence of a subsurface liquid layer.
On Enceladus, the composition of particles ejected from fissures
across the south pole (Hansen et al., 2011; Postberg et al., 2011)
and the observed gravity field (Iess et al., 2014) support models
with a subsurface liquid water reservoir.

Dissipation of tidal energy is an important mechanism for the
long-term evolution of icy satellites because it affects their
thermal, rotational, and orbital states. By analogy with Earth, one
might expect that ocean dissipation would dominate the energy
loss. However, the majority of previous studies that have investi-
gated tidal dissipation in outer Solar System satellites assume that

dissipation occurs only in their solid regions (e.g., Poirier et al.,
1983; Segatz et al., 1988; Ojakangas and Stevenson, 1989; Ross
and Schubert, 1989; Sohl et al., 1995), despite evidence for the
presence of subsurface oceans. The fewer studies considering
ocean dissipation ignore ocean loading, self-attraction, and defor-
mation of the solid regions (Sears, 1995; Tyler, 2008, 2009, 2011;
Chen and Nimmo, 2011; Chen et al., 2013). Therefore, these studies
are only applicable to idealized bodies with infinite rigidity and
without self-gravity. As a notable example, Tyler (2011) concluded
that resonant tides driven by forces associated with obliquity and
eccentricity provided a plausible source for Enceladus notable glo-
bal heat flux. However, Tyler (2009) suggested that the obliquity of
Enceladus (which has not been directly measured) could be very
small, and this was confirmed by Chen and Nimmo (2011) on the
basis of dynamical considerations. Chen and Nimmo (2011) have
argued that the obliquity of Enceladus should be less than
�0.002� and they thus discounted the possibility of a non-negligible
contribution to heating from obliquity tides.

We extend previous theoretical treatments for ocean tidal dissi-
pation by taking into account the effects of ocean loading,
self-attraction, and deformation of the solid regions. The rest of
this paper is organized as follows. Section 2 extends previous the-
oretical treatments by taking into account the effects described
above. Section 3 presents the difference between cases where
these effects are considered against cases where they are not. In
Section 4, we reassess arguments related to tidal heating on
Enceladus using the extended theoretical treatment.
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2. Theory

2.1. Equilibrium tide theory

The equilibrium tide theory assumes that the surface of the
ocean coincides at all times with a gravitational equipotential.
Sagan and Dermott (1982) used this theory to consider tidal dissi-
pation on a surface ocean on Titan. The equilibrium tide theory
ignores the dynamics of the ocean movement. That is, it assumes
that the ocean responds instantaneously to the imposed tidal
potential. However, it is useful to consider this theory because it
provides insight into the effects of ocean loading, self-attraction,
and deformation of the solid regions caused by both the external
tidal potential and ocean loading.

The equilibrium tide on a satellite with infinite rigidity is

geq ¼ UT=g; ð1Þ

where UT is the imposed tidal potential, geq is an equipotential
ocean surface and g is the surface gravity. If self-attraction and finite
rigidity (i.e., deformation of the solid regions) are taken into
account, the equilibrium tide is given by

geq ¼ ð1þ k2 � h2ÞUT=g; ð2Þ

where k2 and h2 are the degree-2 tidal and tidal displacement Love
numbers. The ocean bottom is lifted by h2UT=g, and the additional
gravitational potential arising solely from this mass redistribution
is k2UT . Therefore, 1þ k2 is a factor allowing for the self-attraction
of the solid regions, and the response by h2UT=g takes this self-
attraction into account. Eq. (2) is an expression for the amount an
ocean surface covering the satellite is lifted relative to the ocean
bottom. Because we are considering a surface ocean in this paper,
the Love numbers must be evaluated at the bottom of the ocean.
If ocean loading, and self-attraction and deformation of the solid
regions in response to ocean loading are also taken into account,
the equilibrium tide for a satellite with finite rigidity can be written
as (Agnew and Farrell, 1978)

geq ¼ ceq
UT

g
; ð3Þ

where the equilibrium tide amplification factor is given by

ceq �
1þ k2 � h2

1� 3qo
5�q 1þ k02 � h02
� � : ð4Þ

In Eq. (4), qo is the ocean density, �q is the mean density of the solid
regions beneath the ocean, and k02 and h02 are degree-2 load and

load displacement Love numbers evaluated at the bottom of the
ocean.

The tidal and load Love numbers depend on the interior struc-
ture and rheology of the satellite. These dimensionless numbers
can be calculated using the classical propagator matrix method
(e.g. Sabadini and Vermeersen, 2004). In this method, the Love
numbers are computed by solving mass and momentum conserva-
tion equations, and Poisson’s equation at each layer. The propaga-
tor matrix method can be used to calculate the Love numbers for
any spherically symmetric interior structure, including radial
variations in density and rigidity.

Assuming a uniform interior with density q and rigidity l, the
degree-‘ Love numbers are given by (e.g., Munk and MacDonald,
1960)
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where

�l � 2‘2 þ 4‘þ 3
‘

l
qgR

ð6Þ

is a dimensionless effective rigidity. Table 2 shows the Love
numbers for icy satellites assuming a uniform interior with the
parameters in Table 1.

The denominator in Eq. (4) is a factor allowing for ocean load-
ing, and self-attraction and deformation of the solid regions in
response to ocean loading. This factor is always smaller than unity
if qo < �q as observed in icy satellites; therefore, the combination of
these effects increases the equilibrium tide. In the limit of a vanish-
ing ocean, there is no ocean loading and ceq ¼ 1þ k2 � h2. Indepen-
dently of the interior structure, if the Love numbers are
significantly smaller than unity, which is likely for typical rock
and ice rigidities, ceq (Eq. (4)) is well approximated by

c0eq � 1� 3qo

5�q

� 	�1

: ð7Þ

Table 2 compares ceq and c0eq for icy satellites assuming a
uniform interior with the parameters in Table 1.

2.2. Laplace tidal equations

The Laplace tidal equations describe mass and momentum con-
servation taking into account the dynamics of ocean movement
(Lamb, 1932; Longuet-Higgins, 1968). These equations describe
tides in an incompressible ocean in the shallow water limit. That
is, the ocean thickness h� R, where R is the radius of the satellite.

Table 1
Satellite parameters taken from Chen et al. (2013). Columns correspond to mean radius (R), mean density (�q), surface gravity (g), rigidity (l), rotation rate (X), orbital eccentricity
(e), and obliquity (h0). The rigidities are chosen so as to have values between typical of ice and rock rigidities using the formula l ¼ 4 GPa �q

950 kg m�3


 �
.

R (km) �q (kg m�3) g (m s�3) l (GPa) X (10�5 rad s�1) e �h0 (�)

Europa 1565.0 2989 1.31 12.6 2.05 0.0094 0.053
Ganymede 2631.2 1942 1.43 8.18 1.02 0.0013 0.033
Callisto 2410.3 1834 1.24 7.72 0.436 0.0074 0.24

Mimas 198.2 1150 0.064 4.84 7.72 0.0196 0.041
Encelauds 252.1 1610 0.11 6.78 5.31 0.0044 0.0027
Tethys 531.0 985 0.15 4.15 3.85 0.0001 0.039
Dione 561.4 1478 0.23 6.22 2.66 0.0022 0.002
Rhea 763.5 1237 0.26 5.21 1.61 0.0002 0.030
Titan 2574.7 1882 1.35 7.92 0.456 0.0288 0.32

Miranda 235.8 1200 0.079 5.05 5.15 0.0013 0.021
Ariel 578.9 1665 0.27 7.01 2.89 0.0012 0.0005
Umbriel 584.7 1399 0.23 5.89 1.76 0.0039 0.0026
Titania 788.9 1714 0.38 7.22 0.835 0.0011 0.014
Oberon 761.4 1630 0.35 6.86 0.540 0.0014 0.075

Triton 1353.4 2060 0.78 8.67 1.24 0.0000 0.35
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