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a b s t r a c t

The so-called theory of figures (TOF) uses potential theory to solve for the structure of highly distorted
rotating liquid planets in hydrostatic equilibrium. An apparently divergent expansion for the gravita-
tional potential plays a fundamental role in the traditional TOF. This questionable expansion, when
integrated, leads to the standard geophysical expansion of the external gravitational potential on spher-
ical-harmonics (via the usual J-coefficients). We show that this expansion is convergent and exact on the
planet’s level surfaces, provided that rotational distortion does not exceed a critical value. We examine
the general properties of the Maclaurin multipole expansion and discuss conditions for its convergence
on the surface of both single and nested-concentric Maclaurin spheroids.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Hubbard (2012) introduced a numerical scheme for iteratively
obtaining the external multipole gravity harmonics of a rotating
constant-density Maclaurin spheroid. He compared numerical
results for specified rotation parameters with Maclaurin’s exact
solution and found agreement to high precision, for rotation
parameters typical of giant planets. Kong et al. (2013) showed that
the Hubbard scheme diverges when the spheroid’s rotational dis-
tortion parameter is not sufficiently small, and demonstrated an
alternate expansion that converges for all values of the parameter.
Neither paper fully clarified the exact domain where the two
approaches might overlap, nor the magnitude of discrepancies (if
any) between the approaches. A relevant issue is the validity of
the so-called Laplace expansion, as discussed in Zharkov and
Trubitsyn (1978). The latter reference includes a systematic expo-
sition of the perturbation approach to TOF.

The purpose of the present paper is to reconcile, analytically
and numerically, the different approaches of Hubbard (2012),
Kong et al. (2013) and Zharkov and Trubitsyn (1978), as well as
the newer nonperturbative method of Hubbard (2013), and to
clearly delineate each method’s range of validity and expected
precision for modeling planetary external gravity fields.

2. Power-series expansions of the gravitational potential

2.1. The laplace expansion

The gravitational potential V at a point at vector coordinate r
due to a distribution of mass density q is given by

VðrÞ ¼ G
Z

d3r0qðr0Þ=jr� r0j ð1Þ

where G is the gravitational constant and the integral is taken over
all space where q – 0. For a body rotating at rate x, the total
potential in the fluid’s frame is U ¼ V þ Q , where the rotational
potential Q is proportional to x2.

Consider the simplified problem of the Maclaurin spheroid with
q ¼ const. Fig. 1 shows a cross-sectional view of its surface,
enclosed by reference spheres of radius a (the spheroid’s equatorial
radius), and radius b (the spheroid’s polar radius). The spheroid’s
surface radius rðlÞ is an ellipsoid of revolution given by

r2 ¼ a2

1þ ‘2l2
; ð2Þ

where l is the cosine of the angle from the rotation axis, and

‘2 ¼ a2

b2 � 1: ð3Þ

As discussed by Zharkov and Trubitsyn (1978), Laplace posed
the problem of finding approximations to V by expanding the
factor jr� r0 j�1 under the integral in Eq. (1). To calculate V on the
spheroid’s surface, Laplace expanded jr� r0j�1 in powers of r0=r,
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such that the potential on and exterior to the spheroid’s surface
becomes a sum over multipole moments J2n of the interior mass
distribution, with each moment multiplied by an appropriate
Legendre polynomial P2nðlÞ and factor ða=rÞ2nþ1. The expansion
converges at all points exterior to the outer dashed sphere in
Fig. 1. However, between the two dashed spheres, which of course
includes all points on the spheroid’s surface, there will be a contri-
bution to the integrand from regions with jr0=rjP 1, where the
expansion in powers of r0=r diverges.

Nevertheless, Zharkov and Trubitsyn (1978) conclude that ‘‘. . .

use of a divergent Legendre series is quite valid, because the series
becomes unconditionally convergent after integration, and
corresponds to expansion in powers of x2.’’ As we show below, this
claim is correct, but if and only if the rotational distortion is suffi-
ciently small.

2.2. Expansion in powers of a small parameter

The general TOF of Zharkov and Trubitsyn (1978), which makes
use of the (questionable) Laplace expansion, yields a hierarchy of
expressions for the external gravitational potential. One may
define a small dimensionless parameter, whose leading term is
proportional to x2, to measure the amplitude of the rotational dis-
tortion and corresponding planetary response. Commonly-used
small parameters include

q ¼ x2a3

GM
; ð4Þ

where M is the planetary mass, and

m ¼ 3x2

4pGq
; ð5Þ

where q is the planet’s mean density. To lowest order in x2, the
small parameters m and q are equivalent.

For the particular case of the Maclaurin spheroid (q ¼ const:),
the parameter ‘2 can also be used as a small parameter, and one
has the exact relation (Lamb, 1993)

m ¼ 3
2‘3 3þ ‘2� �

tan�1 ‘� 3‘
� �

: ð6Þ

Zharkov and Trubitsyn (1978) showed that the external gravita-
tional potential of a rotating planet in hydrostatic equilibrium can
be expressed as a double power-series expansion in the small
parameter. Each multipole term in the expansion for V has a coef-
ficient whose further expansion takes the form

J2n ¼ mn
X1
t¼0

KðtÞ2nmt; ð7Þ

where the dimensionless response coefficients KðtÞ2n are obtained
from the solution of a hierarchy of integrodifferential equations.
For practical calculations in the Zharkov–Trubitsyn TOF, the expan-
sion in Eq. (7) must be truncated at a prescribed limiting order in m
(the most complex model considered by Zharkov and Trubitsyn
(1978) carries the calculation to order m5). The total potential V is
thus a double power-series expansion in m, since V is a weighted
sum over the J2n.

For the special case of the Maclaurin spheroid, Hubbard (2012)
showed that the double power-series expansion for the external
gravitational potential becomes a single expansion over the J2n,
since each of these terms can be written in the closed (non-pertur-
bative) form

J2n ¼
3ð�1Þ1þn

ð2nþ 1Þð2nþ 3Þ
‘2

1þ ‘2

 !n

; ð8Þ

Note that Eq. (8) can be rewritten in a perturbative (double power-
series) form equivalent to Eq. (7) by expanding the expression for
J2n in powers of ‘2, and then using Eq. (6) to expand ‘2 in powers
of m.

2.3. Surface potential of the Maclaurin spheroid

In exact closed form, the surface potential of a Maclaurin
spheroid is given by (Zharkov et al., 1971; Lamb, 1993)

Usurface ¼
3GM

2a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ‘2

p 1
‘
þ 1
‘3

� �
tan�1 ‘� 1

‘2

	 

: ð9Þ

Let us now compare this exact result with the surface potential
obtained from a traditional geophysical expansion of the external
gravitational potential (Zharkov and Trubitsyn, 1978):

Usurface;geophys ¼
GM

a
n�1 �

X1
k¼1

J2kn
�ð2kþ1ÞP2kðlÞ þ

q
2

n2ð1� l2Þ
" #

;

ð10Þ

where n ¼ r=a, and the final term corresponds to the rotational
potential Q.

Substituting nðlÞ from Eq. (2) into Eq. (10), and expanding each
n�ð2kþ1Þ in powers of ‘2 and l2, we obtain an expansion for
Usurface;geophys as a bivariate polynomial in ‘2 and l2. Since U must
be constant on the spheroid surface, the coefficients of all terms
in l2 must equate to zero. This proves to be the case, and the
surviving l-independent terms give

Usurface;geophys ¼
GM

a
1þ 3

10
‘2 � 39

280
‘4 þ 139

1680
‘6 � 2749

49280
‘8 þ � � �

	 

:

ð11Þ

Next, we seek an expansion of Eq. (9) for Usurface as a power
series in ‘2. For this purpose, we must use the Taylor series

tan�1 ‘ ¼ ‘� 1
3
‘3 þ 1

5
‘5 � 1

7
‘7 þ � � � : ð12Þ

The resulting power series for Usurface is identical to Eq. (11). How-
ever, a Taylor series expansion of Eq. (9) in ‘ only converges for
‘ < 1. Thus we confirm the result of Kong et al. (2013), that the
geophysical expansion for the surface potential of the Maclaurin
spheroid is convergent if and only if ‘ < 1. Fig. 1 shows the shape
of a Maclaurin spheroid for the critical case ‘ ¼ 1. This case is
critical in a mathematical sense only: it corresponds to the failure
of the Taylor series expansion of Eq. (9) and hence the failure of
the equivalent geophysical expansion of Eq. (10) to converge

Fig. 1. The solid curve shows the ellipsoidal surface of a Maclaurin spheroid, while
the outer dashed curve is a reference sphere of radius a which osculates the
spheroid’s equator. The inner dashed curve is a reference sphere of radius b which
osculates the spheroid’s pole. ‘‘A’’ is an audit point situated at the pole. The spheroid
shown here has ‘2 ¼ 1.
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