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a b s t r a c t

Both Pluto and its satellite Charon have rotation rates synchronous with their orbital mean motion. This
is the theoretical end point of tidal evolution where transfer of angular momentum has ceased. Here we
follow Pluto’s tidal evolution from an initial state having the current total angular momentum of the
system but with Charon in an eccentric orbit with semimajor axis a � 4RP (where RP is the radius of
Pluto), consistent with its impact origin. Two tidal models are used, where the tidal dissipation function
Q / 1/frequency and Q = constant, where details of the evolution are strongly model dependent. The
inclusion of the gravitational harmonic coefficient C22 of both bodies in the analysis allows smooth, self
consistent evolution to the dual synchronous state, whereas its omission frustrates successful evolution
in some cases. The zonal harmonic J2 can also be included, but does not cause a significant effect on the
overall evolution. The ratio of dissipation in Charon to that in Pluto controls the behavior of the orbital
eccentricity, where a judicious choice leads to a nearly constant eccentricity until the final approach to
dual synchronous rotation. The tidal models are complete in the sense that every nuance of tidal evolu-
tion is realized while conserving total angular momentum—including temporary capture into spin–orbit
resonances as Charon’s spin decreases and damped librations about the same.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Pluto has five known satellites: Charon, Nix, Hydra, Keberos,
and Styx, with the latter four much smaller than Charon. Listed
in Table 1 are the physical and orbital parameters of Pluto–Charon
from Buie et al. (2012), unless otherwise specified. The Charon-
Pluto mass ratio ðq ¼ 0:1165Þ is large when compared with others
in the Solar System (1=81 for Moon–Earth and <1/4000 for the
other satellites and their planets). The barycenter of the Pluto–
Charon system lies outside the surface of Pluto. Hence, some
astronomers regard the pair as a binary system (Stern, 1992). The
total angular momentum L of the Pluto–Charon system is so large
that the combined pair would be rotationally unstable (Mignard,
1981a; Lin, 1981).

The Pluto–Charon system is currently in a dual synchronous
state (Buie et al., 1997; Buie et al., 2010), which is the endpoint
of tidal evolution. As such the expected zero orbital eccentricity
has been recently verified (with a 1-r upper limit of 7:5� 10�5),
after taking into account the effects of surface albedo variations
on Pluto (Buie et al., 2012; see Table 1).

As Pluto–Charon is similar to Earth–Moon, the feasible origin of
this system may be chosen from the proposed schemes for the ori-
gin of the Earth–Moon system. A giant impact of a Mars-sized body
is thought to be the only viable origin of the Moon (e.g., Cameron
and Ward, 1976; Boss and Peale, 1986; Canup, 2004) to account
for the large angular momentum of the system. McKinnon (1984)
proposed a similar origin for Charon. If Charon accumulated from
a debris disk resulting from such an impact, the initial eccentricity
of Charon’s orbit would be near zero. Dobrovolskis et al. (1997,
hereafter DPH97) were thereby motivated to determine the tidal
evolution of Charon in a circular orbit to the current dual synchro-
nous state in a time short compared to the age of the Solar System
(see also Farinella et al., 1979) as the only possible outcome of the
dissipative process. In a circular orbit, Charon would reach syn-
chronous rotation very quickly (e.g., DPH97), and this has generally
been assumed (e.g., Peale, 1999). However, smoothed particle
hydrodynamic (SPH) simulations by Canup (2005) showed that
the results of a nearly intact capture in a glancing encounter sur-
round the ðq; LÞ region of the system much more completely than
those of disk-forming impacts. Therefore, capture where Charon
comes off nearly intact after a glancing impact is favored and
non-zero eccentricity would be more probable.

We are not aware of any previous attempts to examine the tidal
evolution of Charon’s orbit incorporating finite eccentricity. As we
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shall see, Charon in an initially eccentric orbit avoids the almost
immediate synchronous rotation heretofore assumed, and the var-
ied and interesting evolutionary sequences that were suppressed
in the circular orbit evolution are revealed. Depending on the ratios
of rigidity l and tidal dissipation function Q between Pluto and
Charon, the eccentricity of Charon’s orbit may either grow or decay
during most of the evolution (Ward and Canup, 2006). Permanent
quadrupole moments of the bodies may also lead to spin–orbit res-
onance, and such resonances can have a significant effect on the
orbital evolution.

In the following we tidally evolve the Pluto–Charon system
with two tidal models distinguished by the dependence of the
dissipation function Q on frequency f : Q / 1=f and Q = constant.
The tidal model developed in Section 2.1 has the tidal distortion
of a body responding to the perturbing body a short time Dt in
the past. Constant Dt leads to Q / 1=f , so we call the Q / 1=f
model the constant Dt model. In Section 2.2 we develop the
equations of evolution for the constant Q model. Although nei-
ther of these frequency dependences represent the behavior of
real solid materials (e.g., Castillo-Rogez et al., 2011) and
although the evolutionary tracks are model dependent, most if
not all of the possible routes from probable initial configurations
to the current equilibrium state are demonstrated. In Section 2.3
we develop the contributions of rotational flattening J2 and per-
manent quadrupole moment C22 to the equations of motion. We
describe the adopted system parameters and initial conditions in
Section 3 and the numerical methods in Section 4. The results
from both the constant Dt and constant Q models with zero J2P

for Pluto and zero C22 for both bodies are shown in Section 5.1,
and the effects of non-zero J2P and C22 in Section 5.2, respec-
tively. The results are discussed in Section 6, and the conclusions
are summarized in Section 7.

2. Tidal models

Tides are raised on Pluto and Charon by each other. Friction de-
lays the response of the tidal bulge to the tide raising potential and
causes tidal lag. The lagged bulge leads to angular momentum ex-
change between itself and the tide raising body, which leads to
rotational and orbital evolution.

2.1. Constant Dt tidal model

The idea of approximating tidal evolution with a single bulge
that lags by a constant Dt was introduced by Gerstenkorn (1955),
and developed and used by Singer (1968), Alexander (1973),
Mignard (1979, 1980, 1981b), Hut (1981), and Peale (2005,
2007). The advantage of assuming a single, lagged bulge is that
the tidal forces and torques can be calculated in closed form for
arbitrary eccentricity and inclination. Either instantaneous or or-
bit-averaged tidal forces and torques can be used to determine
the evolution.

The geometry is illustrated in Fig. 1, where wP and wC are the
angular displacements of the axes of minimum moment of inertia
from the inertial x axis for Pluto and Charon, respectively, - is the
longitude of periapse, f is the true anomaly, and /P and /C are the
azimuthal spherical coordinates appearing in the potentials for
Pluto and Charon, respectively. The x and y coordinates are those
of Charon relative to Pluto with the x–y plane being the Pluto–
Charon orbit plane. Both spin axes are assumed to be perpendicular
to the orbit plane (see Section 3). The motion is thereby two
dimensional, and the z coordinate is ignorable.

The tidal contributions to the equations of motion for Charon
for this model are found from the gradient of the tidal potential ex-
panded to first order in Dt (Mignard, 1980; Peale, 2007):
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where G is the gravitational constant, r and _r are the position and
velocity of Charon relative to Pluto, Mi, Ri; _wi, and k2i are the mass,
radius, spin angular velocity, and second order potential Love num-
ber, respectively, of body i (¼ P for Pluto and ¼ C for Charon), and
MPC ¼ MPMC=ðMP þMCÞ is the reduced mass. The first term on the
right hand side of the first (second) equation in Eq. (1) is the x-com-
ponent (y-component) of the force due to the tides raised on Pluto
by Charon, and the second term is the force due to the tides raised
on Charon by Pluto. The equations of motion for the spins are found
from the negative of the torques on the bodies determined from the
tidal forces:
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where Ci is the moment of inertia of body i about its spin axis.
Eqs. (1) and (2) can be used directly in numerical integration of

the equations of motion in Cartesian coordinates. Alternatively,
one can average the tidal forces and torques over an orbit to obtain
the orbit-averaged equations for the variation of the spin rate _wi,
orbital semimajor axis a, and eccentricity e (Mignard, 1980,
1981b):
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Fig. 1. Geometry of the Pluto–Charon system with orbit and equator planes being
coplanar. wi are the angles between the axes of minimum moment of inertia and the
inertial x axis, and the /i are the azimuthal angles locating respectively MP and MC

in the other’s x0—y0 plane measured counterclockwise from the x0i axes of minimum
moment of inertia.
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