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a b s t r a c t

The rotational evolution of Mercury’s mantle plus crust and its core under conservative and dissipative
torques is important for understanding the planet’s spin state. Dissipation results from tidal torques
and viscous, magnetic, and topographic torques contributed by interactions between the liquid core
and solid mantle. For a spherically symmetric core–mantle boundary (CMB), the system goes to an equi-
librium state wherein the spin axes of the mantle and core are fixed in the frame precessing with the
orbit, and in which the mantle and core are differentially rotating. This equilibrium exhibits a mantle spin
axis that is offset from the Cassini state by larger amounts for weaker core–mantle coupling for all three
dissipative core–mantle coupling mechanisms, and the spin axis of the core is separated farther from that
of the mantle, leading to larger differential rotation. Relatively strong core–mantle coupling is necessary
to bring the mantle spin axis to a position within the uncertainty in its observed position, which is close
to the Cassini state defined for a completely solid Mercury. Strong core–mantle coupling means that Mer-
cury’s response is closer to that of a solid planet. Measured or inferred values of parameters in all three
core–mantle coupling mechanisms for a spherically symmetric CMB appear not to accomplish this
requirement. For a hydrostatic ellipsoidal CMB, pressure coupling dominates the dissipative effects on
the mantle and core positions, and dissipation with pressure coupling brings the mantle spin solidly to
the Cassini state. The core spin goes to a position displaced from that of the mantle by about 3.55 arcmin
nearly in the plane containing the Cassini state. The core spin lags the precessing plane containing the
Cassini state by an increasing angle as the core viscosity is increased. With the maximum viscosity con-
sidered of m � 15:0 cm2=s if the coupling is by the circulation through an Ekman boundary layer or
m � 8:75� 105 cm2=s for purely viscous coupling, the core spin lags the precessing Cassini plane by
23 arcsec, whereas the mantle spin lags by only 0.055 arcsec. Larger, non-hydrostatic values of the
CMB ellipticity also result in the mantle spin at the Cassini state, but the core spin is moved closer to
the mantle spin. Current measurement uncertainties preclude using the mantle offset to constrain the
internal core viscosity.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Mercury is in a stable spin–orbit resonance in which the rota-
tional angular velocity is precisely 1.5 times the mean orbital mo-
tion (Pettengill and Dyce, 1965; Colombo and Shapiro, 1966). This
rotation state is a natural outcome of tidal evolution (Goldreich
and Peale, 1966; Correia and Laskar, 2004, 2009). In addition, the
same tidal evolution brings Mercury to Cassini state 1, wherein
Mercury’s spin axis remains coplanar with the orbit normal and
Laplace plane normal as the spin vector and orbit normal precess

around the latter with a �300,000 yr period (Colombo, 1966; Peale,
1969, 1974). That Mercury is very close to this state has been ver-
ified with radar observations, which give an obliquity of
2:04� 0:08 arcmin (Margot et al., 2007, 2012). The most recent
observations show that the best-fit solution is offset from the Cas-
sini state by a few arcseconds, but the uncertainty at one standard
deviation includes the Cassini state.

This paper is an investigation of the possible displacement of
the spin axis from the Cassini state from dissipative processes
and the consequences of pressure coupling. In Section 2 we devel-
op the equations for the rotational motion of both the core and the
mantle plus crust from conservative and dissipative torques. The
latter include the tidal torque and the torques due to viscous, mag-
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netic, and topographical coupling between the core and mantle for
a spherically symmetric core–mantle boundary (CMB). Gravita-
tional and rotational distortions of the CMB lead to pressure tor-
ques that dominate all the dissipative torques. Results are given
in Section 3, where we show that the tidal offset of the mantle spin
axis from the Cassini state is immeasurably small, but the offset
due to the core–mantle interactions can be quite large, and weaker
core–mantle coupling leads to larger offsets. The core–mantle dis-
sipative coupling must be relatively strong to bring the mantle
spin-axis to within the uncertainty of its observed location. The
failure of viscous, magnetic and topographic mechanisms, which
dominate the tidal mechanism, to bring the spin axis near its ob-
served position for measured or likely values of the parameters is
compensated by the pressure coupling between the core and man-
tle for both hydrostatic and non-hydrostatic ellipsoidal CMB,
which we examine in Section 3.5.

We maintain the current orbital configurations throughout the
calculations even though the dissipative time scales are long en-
ough for significant changes to occur. This assumption is justified
because the spin axis will follow the Cassini state as the latter’s po-
sition changes during the slow changes in the Solar System config-
uration because of adiabatic invariance of the solid angle swept out
by the spin axis as it precesses around the Cassini state. The spin
axis remains within 1 arcsec of the Cassini state position through
both long-period and short-period changes in the state position
(Peale, 2006). We are interested only in the final equilibrium posi-
tions of the core and mantle spins in the current orbit frame of ref-
erence, and these positions will be the same if the evolution takes
place with the current, fixed orbital and Solar System parameters
or if these parameters are allowed to evolve during the evolution
to the current state.

2. Equations of variation

The coordinate systems and angles for the equations that gov-
ern the rotational motion of Mercury are shown in Fig. 1, where
X 0; Y 0; Z0 are quasi-inertial axes with the X0Y 0 plane being the
Laplace plane on which Mercury’s orbit precesses at nearly a con-
stant inclination I and nearly constant angular velocity l. The XYZ
orbit system has the X axis along the ascending node of the orbit
plane on the Laplace plane, and the XY plane is the orbit plane.

The xyz system is fixed in the body, with z along the spin axis
and x along the axis of minimum moment of inertia in the equator
plane. The Euler angles orienting the xyz system relative to the XYZ
system are X; i;w, where X is the longitude of the ascending node
of the equator plane on the XY orbit plane measured from the X
axis, i is the inclination of the equator plane to the orbit plane,
and w is the angle from the ascending node of the equator on the
orbit plane to the x axis of minimum moment of inertia. The three
Euler angles will have subscripts m or f to designate mantle or fluid
core, respectively. Angle I is the inclination of the orbit plane to the
Laplace plane, Xo is the longitude of the ascending node of the orbit
plane on the Laplace plane, x is the argument of perihelion, f is the
true anomaly of the Sun, and r is the distance from Mercury to the Sun.

We assume principal axis rotation throughout. The angular
momentum of the mantle plus crust is Lm ¼ Cm

_wmkm ¼ Cm
_wm,

where Cm is the moment of inertia of the mantle plus crust about
the spin axis, _wm is the angular velocity of the mantle, and km ¼
sin im sin XmI� sin im cos XmJþ cos imK is a unit vector along the
spin axis. I; J;K are unit vectors along the X;Y ; Z axes, respectively.
With dLm=dt ¼ Cmðd _wm=dtÞkm þ Cm

_wmðdkm=dtÞ, we can write

1
Cm

dLmX

dt
¼ d _wm

dt
sin im sinXmþ _wm cos im sinXm

dim

dt
þ sin im cosXm

dXm

dt

� �
1

Cm

dLmY

dt
¼�d _wm

dt
sin im cosXmþ _wm �cos im cosXm

dim

dt
þsin im sinXm

dXm

dt

� �
1

Cm

dLmZ

dt
¼ d _wm

dt
cos im� _wm sin im

dim

dt
ð1Þ

for the variations of the three components of angular momentum
relative to the orbit system of coordinates, which system is readily
observable.

The total torque on Mercury’s mantle plus crust
hTmi ¼ hTbodyi þ hTtidei þ hTf�mi, is the sum of the conservative grav-
itational torque, the tidal torque, and the torque from the core–
mantle interaction. The latter torque has four contributions,
hTviscousi; hTmagnetici; hTtopographici, and hTpressurei, for viscous, magnetic,
topographic, and pressure coupling, respectively. The angled
brackets indicate that these torques are averaged over an orbit per-
iod; the core–mantle torques do not involve the orbital elements,
so they are intrinsically averaged. We desire the variation of Lm rel-
ative to the precessing orbit system, where the variation relative to
inertial space is given by the total torque. We therefore write
dLm=dt ¼ hTmi � l� Lm, where l is the angular velocity of the or-
bit precession. If we write Nm ¼ hTmi=Cm � l� _wm, we can equate
each component of ð1=CmÞdLm=dt in Eq. (1) to the corresponding
component of Nm and solve the resulting set for d _wm=dt; dim=dt,
and dXm=dt to follow the motion of Mercury’s mantle under con-
servative and dissipative torques. We find

d _wm

dt
¼ sin imðNmX sin Xm � NmY cos XmÞ þ NmZ cos im;

dim

dt
¼ � 1

_wm

½cos imð�NmX sin Xm þ NmY cos XmÞ þ NmZ sin im�;

dXm

dt
¼ 1

_wm sin im

ðNmX cos Xm þ NmY sin XmÞ: ð2Þ

We change variables to pm ¼ sin im sin Xm and qm ¼ sin im cos Xm to
eliminate the sin im singularity in the third of Eq. (2). Differentiating
these variables with respect to time, substituting the expressions
for the time derivatives from Eq. (2), and expressing the circular
functions in terms of pm and qm yields
d _wm

dt
¼ pmNmX � qmNmY þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

m � q2
m

q
NmZ

dpm

dt
¼ 1

_wm

ð1� p2
mÞNmX þ pmqmNmY � pm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

m � q2
m

q
NmZ

� �
dqm

dt
¼ � 1

_wm

pmqmNmX þ ð1� q2
mÞNmY þ qm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

m � q2
m

q
NmZ

� �
ð3ÞFig. 1. Coordinate systems and relevant angles. The angles orienting mantle or core

relative to the XYZ orbit system will have subscripts m or c, respectively.

S.J. Peale et al. / Icarus 231 (2014) 206–220 207



Download English Version:

https://daneshyari.com/en/article/8138588

Download Persian Version:

https://daneshyari.com/article/8138588

Daneshyari.com

https://daneshyari.com/en/article/8138588
https://daneshyari.com/article/8138588
https://daneshyari.com

