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a b s t r a c t

Tidal heating plays a significant role in the evolution of many satellites in the outer Solar System; how-
ever, it is unclear whether tidal dissipation in a global liquid ocean can represent a significant additional
heat source. Tyler (Tyler, R.H. [2008]. Nature 456, 770-772; Tyler, R.H. [2009]. Geophys. Res. Lett. 36,
doi:10.1029/2009GL038300) suggested that obliquity tides could drive large-scale flow in the oceans
of Europa and Enceladus, leading to significant heating. A critical unknown in this previous work is what
the tidal quality factor, Q, of such an ocean should be. The corresponding tidal dissipation spans orders of
magnitude depending on the value of Q assumed.

To address this issue we adopt an approach employed in terrestrial ocean modeling, where a significant
portion of tidal dissipation arises due to bottom drag, with the drag coefficient O (0.001) being relatively
well-established. From numerical solutions to the shallow-water equations including nonlinear bottom
drag, we obtain scalings for the equivalent value of Q as a function of this drag coefficient. In addition,
we provide new scaling relations appropriate for the inclusion of ocean tidal heating in thermal–orbital
evolution models. Our approach is appropriate for situations in which the ocean bottom topography is
much smaller than the ocean thickness.

Using these novel scalings, we calculate the ocean contribution to the overall thermal energy budgets
for many of the outer Solar System satellites. Although uncertainties such as ocean thickness and satellite
obliquity remain, we find that for most satellites it is unlikely that ocean tidal dissipation is important
when compared to either radiogenic or solid-body tidal heating. Of known satellites, Triton is the most
likely icy satellite to have ocean tidal heating play a role in its present day thermal budget and long-term
thermal evolution.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Tidal heating influences the present-day behavior of some plan-
etary bodies, such as Io (Peale et al., 1979) and Enceladus (Spencer
et al., 2006; Howett et al., 2011). It probably also played a role at
earlier times elsewhere, including Europa (Hussmann and Spohn,
2004), Ganymede (Showman et al., 1997), Triton (Jankowski et al.,
1989), and the Moon (Garrick-Bethell et al., 2010), and may be
important in some super-Earth exoplanets (Henning et al., 2009).

For solid bodies, the effects of tides and their associated dissipa-
tion are typically calculated assuming a viscoelastic rheology, such
as Maxwell, Andrade or Burgers (e.g. Ross and Schubert (1989); To-
bie et al. (2005); Efroimsky and Williams (2009); Castillo-Rogez
et al. (2011); Nimmo et al. (2012)), though other processes (such
as frictional heating, e.g. Nimmo and Gaidos (2002)) may also play
a role. For primarily fluid bodies, such as giant planets, a significant
component of dissipation is likely to be due to the breaking of
internal gravity waves (Ogilvie and Lin, 2004). Lastly, fluid layers

on or within solid bodies may also be a source of dissipation. On
the Earth it is well-known that tidal dissipation occurs mainly in
the oceans (Munk and MacDonald, 1960; Egbert and Ray, 2000;
Ray et al., 2001). Global subsurface oceans are thought to occur
on at least Europa, Ganymede, Callisto, Titan and perhaps Encela-
dus (Khurana et al., 1998; Kivelson et al., 2002; Bills and Nimmo,
2011; Iess et al., 2012; Postberg et al., 2011); our focus in this paper
is to examine tidal dissipation within such oceans.

In a prescient paper, Ross and Schubert (1989) discussed the pos-
sibility of tidal heating on Enceladus arising from turbulent dissipa-
tion in a subsurface ocean. More recently, Tyler (2011) expanded an
analysis initially developed by Longuet-Higgins (1968) to investi-
gate energy dissipation in tidally-driven satellite oceans. In Tyler
(2011), a key free parameter is the linear drag constant a, which
can be related to a tidal quality factor Q. It is worth noting that the
value of a or Q is a priori very poorly known and the total energy dis-
sipation scales linearly with the model’s prescribed value.

In this paper, we follow an analysis similar to that of Tyler
(2011). However, we depart from his approach in two important
respects. First, we provide an estimate for Q using an approach
and parameter values developed in studies of the Earth’s oceans.
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Second, we present approximate scaling relationships which allow
fluid dissipation to be calculated in a manner analogous to the
well-known equations for solid body dissipation (e.g. Segatz et al.
(1988); Ross and Schubert (1989); Wisdom (2008)). This will facil-
itate investigation of long-term satellite evolution, in which the
thermal and orbital histories are coupled (e.g. Ojakangas and Ste-
venson (1989); Hussmann and Spohn (2004); Bland et al. (2009);
Meyer et al. (2010); Zhang and Nimmo (2012)).

The rest of this paper is organized as follows. Section 2 reviews
the shallow water equations appropriate for flow in global fluid lay-
ers on a rotating spherical shell. For clarity, we summarize a semi-
analytic solution to these equations, similar to that adopted by
Longuet-Higgins (1968) and Tyler (2011), and in addition, explicitly
present the method and equations used to calculate quantities such
as the average kinetic energy and energy dissipation. Section 3 sim-
plifies this system and carries out an analytical study of the re-
sponse of a shallow global ocean to tidal forcing, building on the
method presented in Section 2. This novel analysis derives approx-
imate scaling relationships for ocean tidal flow and the resulting
dissipation under typical icy satellite parameters. The algebra in-
volved can be tedious; to aid clarity, many details have been rele-
gated to Appendices E and F, while Table 4 summarizes the key
results. The advantage of these relationships is that they retain
the fundamental physical effects while being somewhat simpler
to implement than the method presented in Section 2. The results
of Section 3 are expressed in terms of an unknown effective (pre-
sumably turbulent) viscosity. In Section 4, we present an estimate
for this viscosity using a numerical technique based on analogy to
frictional ocean dissipation on Earth. We discuss the applications
and implications of these results in Section 5. In particular, ocean
dissipation is unlikely to be a significant heat source unless the
orbital eccentricity is very small; Triton is thus the most likely can-
didate for a satellite in which ocean tidal dissipation is significant.

2. Ocean tidal dissipation

Here we briefly review the equations of motion for a shallow
global satellite ocean. These equations are equivalent to Eqs. (3)
and (4) presented in Tyler (2011); we present fully dimensional
equations and explicitly expand these equations for the solutions
to unknown spherical harmonic coefficients.

The forced, dissipative, shallow water equations on a rotating
sphere are (cf. Longuet-Higgins (1968) Eqs. (13.1)–(13.3) or Tyler
(2011) Eqs. (3) and (4), noting the sign difference in the tidal po-
tential term)

@~u
@t
þ 2X cos hr̂ �~u ¼ �g~rg� ~rU � a~uþ mr2~u ð1Þ

and

@g
@t
þ h~r �~u ¼ 0; ð2Þ

where~u is the radially-averaged, horizontal velocity vector, X is the
constant rotation rate, r̂ is the unit vector in the radial direction, g is
the surface gravity, g is the vertical displacement of the surface, and
h is the constant ocean depth. The dissipation can be represented as
either a linear process with a linear coefficient a or a Navier–Stokes
type viscosity with a viscous diffusivity of m. We assume no radial
gradients in our shallow-water model such that the Laplacian oper-
ator, r2, has no radial contributions and thus, m is an effective hor-
izontal diffusivity. U represents the forcing potential due to tides,
either eccentricity- or obliquity-related. Eqs. (1) and (2) are valid
for incompressible flow under the assumptions that the thickness
of the fluid layer is much smaller than the radius of the body
ðh� RÞ, the vertical displacement is much smaller than the layer
thickness ðg� hÞ and fluid properties are constant (e.g. a and m).

These equations ignore ocean stratification, and thus do not include
the effects of internal tides. In addition, they do not include overly-
ing ice shell rigidity, though this effect should be small (Matsuyama,
2012).

2.1. Tidal potentials

For synchronously rotating satellites, such as the regular sat-
ellites of Jupiter and Saturn, we are concerned with the ocean
flow driven by the eccentricity of the orbit and the obliquity,
the tilt of the rotational axis relative to the orbital axis. The forc-
ing tidal potentials can be derived by assuming the planet is a
point mass and calculating the resulting gravitational potential
at every point on the satellite (cf. Kaula (1964); Murray and Der-
mott (1999)).

2.1.1. Obliquity tides
The obliquity tidal potential at a point of colatitude h and longi-

tude / on a synchronously rotating satellite with small obliquity h0

(in radians) is a standing wave and can be written as the sum of an
eastward and a westward propagating potential (cf. Tyler (2011)
Eq. (34))

Uobl ¼
�3
2

X2R2h0 sin h cos hðcosð/�XtÞ þ cosð/þXtÞÞ: ð3Þ

We define Laplace spherical harmonics of degree l and order m, Ym
l ,

as

Ym
l ðh;/Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ

4p
ðl�mÞ!
ðlþmÞ!

s
Pm

l ðcos hÞeim/ ð4Þ

employing a Condon–Shortley phase factor of ð�1Þm for m > 0.
These spherical harmonics are orthogonal underZ 2p

0

Z p

0
Ym

l Ym0�
l0 sin hdhd/ ¼ dl;l0dm;m0 ð5Þ

where � denotes the complex conjugate and d is the Kronecker delta.
The obliquity tidal potential thus can be expressed in spherical

harmonics as a westward propagating potential Uobl;W ,

Uobl;W ¼
3
2

ffiffiffiffiffiffiffi
2p
15

r
X2R2h0ðeiXtY1

2 � e�iXtY�1
2 Þ

¼ 2
3
2

ffiffiffiffiffiffiffi
2p
15

r
X2R2h0

 !
RðeiXtY1

2Þ � 2U1
2;WR eiXtY1

2

� �
; ð6Þ

and a symmetric eastward propagating potential Uobl;E for which the
eiXt term is replaced by e�iXt and U1

2;E ¼ U1
2;W .

2.1.2. Eccentricity tides
The eccentricity tidal potential can be expressed as (Kaula,

1964) (cf. Tyler (2011) Eq. (35))

Uecc ¼
�3
4

X2R2e½�ð3 cos2 h� 1Þ cos Xt þ sin2 hð3

� cos 2/ cos Xt þ 4 sin 2/ sin XtÞ�: ð7Þ

For the subsequent analysis, the eccentricity tidal potential can be
split into three separate components. There is an axisymmetric
component, Uecc;rad, (Tyler (2011) calls this the ‘‘radial’’ component)

Uecc;rad ¼ 3
ffiffiffiffi
p
5

r
X2R2e cos Xt

� �
Y0

2

¼ 1
2

3
ffiffiffiffi
p
5

r
X2R2e

� �
ðeiXt þ e�iXtÞY0

2 � U0
2ðeiXt þ e�iXtÞY0

2 ð8Þ

There is also an asymmetric librational component, Uecc;lib, that can
be split into a westward propagating potential
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