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a b s t r a c t

We consider the stability of rubble-pile satellites that are held together by their own gravity. A satellite is
said to be stable whenever it is both orbitally and structurally stable to both orbital and structural per-
turbations. We restrict attention to satellites whose dimensions are small compared to their respective
orbital radii and their associated planets’ sizes. In this case, we show that a satellite is stable whenever
it is orbitally stable to orbital perturbations and structurally stable to structural perturbations. Orbital
stability is investigated by a spectral analysis, while structural stability is probed by appropriately
extending the work of Sharma [Sharma, I., 2012. Stability of rotating non-smooth complex fluids. J. Fluid
Mech. 708, 71–99; Sharma, I., 2013. Structural stability of rubble-pile asteroids. Icarus 223, 367–382]. The
stability test is then applied to planetary satellites of the Solar System that are suspected to be granular
aggregates, including many of the recently discovered smaller moons of the giant planets.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Many planetary satellites including those of Mars and some of
the newly discovered moons of the giant planets are suspected to
be granular aggregates held together by self gravity alone. The
equilibrium shapes of these objects have been previously analyzed
utilizing volume-averaging by Sharma (2009), henceforth Paper I,
assuming them to be of ellipsoidal shape and on tidally-locked
circular orbits about a massive, possibly oblate, central planet. In
the context of shapes and failure of solid satellites, we also mention
related work of Aggarwal and Oberbeck (1974) who estimated the
Roche limit of an elastic and spherical satellite while assuming brit-
tle failure, Dobrovolskis (1990) who combined the Navier criterion
for failure of sandy materials with an elastic stress analysis of
ellipsoids, Davidsson (1999, 2001) who assumed that the satellite
failed when the maximum value of the average normal stress across
some critical plane within the satellite surpassed the constituent
material’s tensile strength, and Holsapple and Michel (2006,
2008) who employed limit analysis and a pressure-dependent
Mohr–Coulomb yield condition to investigate the equilibrium of
granular ellipsoids in the presence of self-gravity and tidal interac-
tion. The equilibrium shapes of fluid satellites has, of course, been
extensively studied, see, e.g., Chandrasekhar (1969, Chapter 8).

Stability analyses of planetary satellites has typically focussed
on the orbital stability of these objects, disregarding the response
of the satellite as a distributed mass that may possibly yield and

deform significantly. In astrophysical applications, structural sta-
bility of orbiting fluid ellipsoids has, however, been investigated.
These fall under the stability of Roche and Darwin ellipsoids; see
Chandrasekhar (1969, Chapter 8). Some recent advances are due
to Lai et al. (1993) who considered the stability of compressible
inviscid fluid Roche and Roche-Riemann ellipsoids. These authors
tested stability by minimizing an energy functional that was al-
lowed to depend on parameters such as the ellipsoid’s shape, den-
sity, mass, angular momentum, and internal vorticity.

Here, we investigate the stability of granular satellites. A satel-
lite will be deemed stable only if its orbit and its structure are both
stable to both orbital and structural perturbations. Here, by struc-
ture we mean the collection of material points that constitute the
satellite, and structural stability refers to this collective staying
close to its equilibrium configuration; we will discuss stability
more precisely in Section 5. In the case of satellites whose prima-
ries are much more massive, we will show in Section 5.2 that
orbital and structural stability may be considered separately.
While orbital stability may then be determined by standard meth-
ods, structural stability will be gauged by suitably extending Shar-
ma’s (2013) stability analysis of asteroids to the case of satellites
by including the effect of tidal forces. We limit ourselves to homo-
geneous velocity perturbations of the equilibrium state. For defi-
niteness, at equilibrium the satellite will be assumed to be of
ellipsoidal shape and on a circular orbit about a massive primary;
see Fig. 1. While the present framework may be utilized for the
stability analysis of any satellite system wherein the primary is
much larger than the secondary, we will present final calculations
suitable for spheroidal primaries and will be most suitable for
planetary satellites. Other shapes of the primary may be probed
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by appropriately modifying the tidal shape tensor, and this would
extend the applicability of the current analysis to asteroidal
satellites.

We first derive the equations for a homogeneously deforming
ellipsoidal satellite.

2. Satellite dynamics

2.1. Structural deformation

Paper I derives equations for a homogeneously deforming ellip-
soidal satellite of an oblate planet. For such a body, a material
point’s velocity is linearly dependent on its location with respect
to the ellipsoid’s center. In stability investigations, it is expedient
to phrase these equations in a frame O rotating at xðtÞ and
attached to the satellite’s centroid S. With xðtÞ we associate an
anti-symmetric angular-velocity tensor XðtÞ satisfying

x� x ¼ X � x; ð1Þ

where x is a material point’s location relative to S; x is X’s associ-
ated axial vector. We employ such rotation rate vectors and their
corresponding tensors interchangeably.

In the rotating frame O, for a homogeneously deforming ellip-
soid, a material point’s velocity relative to the ellipsoid’s center is

_x ¼ L � x; ð2Þ

where the dot ð�Þ indicates time derivative with respect to an obser-
ver in O and L is the velocity gradient observed in O that depends
only on time. The tensor L estimates the local rate of change of rel-
ative displacement, while its symmetric ðDÞ and anti-symmetric
ðWÞ parts capture local deformation and rotation rates, respec-
tively. The governing equations for homogeneous dynamics as
observed in O were found by Sharma (2013) to be

ð _Lþ L2Þ � I ¼ �rV þMT � _XþX2 þ 2X � L
� �

� I ð3aÞ

and _I ¼ L � I þ I � LT ; ð3bÞ

where r is the volume-averaged stress tensor,

I ¼
Z

V
qx � xdV ð4aÞ

and M ¼
Z

V
qx � bdV ; ð4bÞ

are, respectively, the ellipsoid’s inertia tensor and external moment
tensor due to applied body forces b, and q and V are the ellipsoid’s
density and volume, respectively. In (3a), the last three bracketed
terms on the right-hand side are, respectively, angular, centripetal
and Coriolis’ accelerations, and act as external moment tensors in
the rotating frame O. Equation (3a) follows L’s evolution in O by
balancing internal stresses, external moments and inertial effects,

while (3b) describes the changing inertia tensor. We note that I is
different from the Euler moment of inertia tensor J commonly em-
ployed in rigid body mechanics; cf. (25).

The tensor M includes the effect of the satellite’s own gravity
and that of the planet. The moment due to the satellite’s self-grav-
ity is found by Sharma et al. (2009) to be

MG ¼ �2pqGI � A; ð5Þ

where A is the gravitational shape tensor that captures the effect of
the satellite’s ellipsoidal shape on its internal gravity. The tensor A
is diagonalized in the satellite’s principal axes coordinate system,
and its components in that frame are available in Sharma et al.
(2009). The gravitational force exerted on a unit mass within the sa-
tellite at X ¼ xþ RêR by an ellipsoidal planet is

bQ ¼ �2pq0GB � X; ð6Þ

where q0 is the planet’s density and B is the tidal shape tensor that
captures the effect of the planet’s ellipsoidal shape and depends
on X and the planet’s semi-major axes a0i. The tensor B is diagonal-
ized in the planet’s principal axes frame and depends on the ellipsoi-
dal coordinate of the material point at X; see Eq. (19) of Paper I. To
estimate the tidal moment, we first expand B as

B ¼ Bð0Þ þBð1Þ � x
R
þ Bð2Þ :

x � x

R2 þ � � � ;

where Bð0Þ;Bð1Þ and Bð2Þ are, respectively, second-, third- and fourth-

order tensors, and, in indical notation, Bð1Þ � x
� �

ij ¼ Bð1Þijk xk and

Bð2Þ : x � x
� �

ij ¼ Bð2Þijklxlxk. Note that because B is a symmetric tensor,

so too is Bð0Þ, while Bð1Þ and Bð2Þ are symmetric in their first two

arguments, i.e., Bð1Þijk ¼ Bð1Þjik and Bð2Þijkl ¼ Bð2Þjikl. We then substitute the
above expansion in (4b) and compute the resulting integrals, to ob-

tain the tidal moment due to the planet correct up to Oðjxj3=R3Þ as

MQ ¼ �2pq0GI � Bð0Þ þ êR � Bð1Þ
� �T

h i
; ð7Þ

where êR �Bð1Þ
� �

jk ¼ eRi
Bð1Þijk ; see Paper I for more details. The total

moment is then

M ¼ MG þMQ ¼ �2pqGI � A� 2pq0GI � Bð0Þ þ êR �Bð1Þ
� �T

h i
: ð8Þ

Equation (3) along with (8) follow a homogeneously deforming
ellipsoidal satellite’s structural motion relative to frame O.

We now describe the satellite’s orbital motion about the planet.

2.2. Orbital motion

To track the satellite’s orbit, we equate the total force F acting
on the satellite to its mass center’s acceleration:

mf€Rþ _XþX2� �
� Rþ 2X � _Rg ¼ F; ð9Þ

where m is the satellite’s mass and the left-hand side is the absolute
acceleration of the satellite’s mass center written in the rotating
frame O. The total force F exerted by the oblate planet on the satel-
lite is obtained by computing

R
qbQ dV with bQ given by (6).

Employing B’s expansion from Section 2.1 of Paper I finds

F ¼ �2pq0GRm Bð0Þ � êR þ
1

mR2 Bð1Þ þ êR � Bð2Þ
� �

: I
� �

;

correct up to Oðjxj3=R3Þ and ðBð1Þ þ êR � Bð2ÞÞ : I
� �

j ¼ Bð1Þjkl þ êRi
Bð2Þijkl

� 	
Ikl.

Because I=mR2 scales as �a2=R2, where �a is the satellite’s average
diameter, we may, for satellite systems where the separation from
the planet is much greater than the satellite’s size, approximate F as

F � �2pq0GmBð0Þ � R: ð10Þ
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Fig. 1. Equilibrium configuration of an ellipsoidal satellite of an oblate planet. The
unit vector êR locates the satellite with respect to the planet’s center.
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