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a b s t r a c t

We derive the locations of the fully synchronous end states of tidal evolution for binary asteroid systems
having one spherical component and one oblate- or prolate-spheroid component. Departures from a
spherical shape, at levels observed among binary asteroids, can result in the lack of a stable tidal end state
for particular combinations of the system mass fraction and angular momentum, in which case the binary
must collapse to contact. We illustrate our analytical results with near-Earth Asteroids (8567) 1996 HW1,
(66391) 1999 KW4, and 69230 Hermes.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Recent studies have examined energy, stability, and orbital
relative equilibria in the planar two-body problem for a non-
rotating sphere and an arbitrary, rotating ellipsoid (Scheeres,
2007; Bellerose and Scheeres, 2008) and approximately for two
arbitrary, rotating ellipsoids (Scheeres, 2009). Here, we examine
the special case of a rotating sphere interacting with a rotating
oblate or prolate spheroid and provide exact, tractable analytical
results for the locations of the fully synchronous end states of tidal
evolution. The terms fully synchronous tidal end state and orbital
relative equilibrium can be used interchangeably to describe a
zero-eccentricity binary system that has ceased tidally evolving
because the spin rates of both components have synchronized to
the mean motion of the components about the center of mass of
the system.

This note is organized as follows. In Section 2, we review fully
synchronous tidal end states of a binary system consisting of two
spheres. Section 3 extends the discussion to a sphere interacting
with an ellipsoid and explores the specific cases of oblate and
prolate spheroids with applications to real asteroid systems. Com-
parisons to previous work in Sections 3 and 4 place this work in
context and possible avenues for contact-binary formation are
suggested.

2. Fully synchronous orbits with spherical components

The locations of the fully synchronous end states of tidal evolu-
tion for binary asteroids with spherical components were
discussed by Taylor and Margot (2011) and are summarized here.
For components of equal, uniform density q with radii R1 and R2

and mass ratio q ¼ M2=M1 ¼ ðR2=R1Þ3 separated by a distance a
in their circular mutual orbit, the sum of the orbital and spin
angular momentum J upon full synchronization, scaled by

J0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðM1 þM2Þ3Reff

q
, where Reff is the effective radius of a sphere

with the same volume as both components combined, is:

J
J0
¼ q

ð1þ qÞ13=6

a
R1

� �1=2

þ 2
5

1þ q5=3

1þ qð Þ7=6

a
R1

� ��3=2

ð1Þ

[cf. Taylor and Margot (2011), Eq. (8)]. The term on the left, propor-
tional to a1=2, is the orbital angular momentum of the system revol-
ving with mean motion n, given by Kepler’s Third Law, scaled by J0.
The term on the right, proportional to a�3=2, is the spin angular
momentum of the two components, both rotating with spin rate
n, scaled by J0. The 1þ q5=3 term is proportional to the sum of the
moments of inertia of the two bodies; removing the q5=3 term
amounts to ignoring the spin angular momentum of component 2.
Depending on the mass ratio and the total angular momentum of
the system, Eq. (1) may have zero, one (degenerate), or two solu-
tions (one unstable and one stable), corresponding to the number
of fully synchronous orbits supported by the system. The total
energy when the system has fully synchronized may be positive
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or negative depending on the parameters of the system. One can
show that the zero-energy limit always falls within the stability
limit that splits the unstable and stable solutions such that all sta-
ble, fully synchronous orbits have negative energy, i.e., they are
gravitationally bound.

For plotting purposes, we transform from mass ratio q to mass
fraction v ¼ M2=ðM1 þM2Þ and scale the separation a by R1 þ R2,
the contact limit. Fig. 1 shows, for a two-sphere binary system,
the locations of the fully synchronous orbits using contours of
angular momentum J=J0. Because the components are similar in
shape, the diagram is mirror symmetric about v ¼ 0:5; this will
not be the case when one component is nonspherical. Unstable in-
ner synchronous orbits, the solutions below the stability limit in
Fig. 1, almost always fall within the contact limit, with the excep-
tion of the J=J0 ¼ 0:25 curve, similar to the angular momentum
found in most large main-belt binary systems likely formed by col-
lisions. In systems with J=J0 � 0:4, similar to near-Earth binaries
and small main-belt binaries likely formed via spin-up processes,
the secondary is formed beyond the inner synchronous orbit and
will naturally tidally evolve outward, vertically through the dia-
gram, until reaching the outer synchronous orbit at the intersec-
tion with its corresponding angular-momentum contour. Of
course, this is a simplistic view because the post-fission dynamical
environment of a newly formed binary asteroid is chaotic
(Jacobson and Scheeres, 2011), carrying the risk of ejection or
re-impact of the secondary or the secondary itself undergoing
fission. Once the system has settled, the steady, comparatively
quiescent, tidal evolution to the outer synchronous orbit continues
as in Fig. 1. An equal-mass binary with v ¼ 0:5 must have
J=J0 > 0:44 (more exactly, 0.43956) to have a stable tidal end state.

3. Fully synchronous orbits with a nonspherical component

Let component 1 of the binary system be a uniform-density
ellipsoid with principal semi-axes a0 P a1 P a2 such that the

equivalent radius of the ellipsoid is R1 ¼ ða0a1a2Þ1=3. For rotation
about the shortest principal axis, the ratio of the moment of inertia
of the ellipsoid to that of its equivalent-volume sphere with radius
R1 is the nonsphericity parameter (Descamps and Marchis, 2008):

k ¼ 1þ b2

2ðabÞ2=3 ; ð2Þ

where a ¼ a2=a0; b ¼ a1=a0, and a 6 b � 1. The nonsphericity
parameter is always larger than unity because any departure from
a spherical shape requires displacing mass farther from the spin
axis and increases the moment of inertia of the body. Component
2 is assumed to remain spherical. To retain orbital relative equilib-
rium, the sphere must orbit above one of the principal axes of the
ellipsoid and the system must rotate about another principal axis
of the ellipsoid at a specific rate (Scheeres, 2006) given by:

n2 ¼ 3
2

G M1 þM2ð Þ
Z 1

r2�a2
i

du
a2

i þ u
� �

DðuÞ
ð3Þ

[cf. Scheeres (2007), Eq. (18)], whereDðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

0 þu
� �

a2
1þu

� �
a2

2þu
� �q

;

ai is the principal semi-axis that the sphere orbits above, and r is the
orbital separation of the bodies (r is the semimajor axis a for the circular
orbits considered here). Defining �a¼ a=a0 and u0 ¼ u=a2

0, the mean
motion becomes:

n2 ¼ G M1 þM2ð Þ
a3 f a; b; �a; aið Þ; ð4Þ

introducing f as the dimensionless integral:

f a;b;�a;aið Þ ¼ 3
2

�a3
Z 1

�a2� ai
a0

� �2
du0

ai
a0

� �2
þu0

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þu0ð Þ a2þu0ð Þ b2þu0

� �q :

ð5Þ

For two spheres, Eq. (4) simplifies to Kepler’s Third Law as the inte-
gral f goes to unity. To apply this condition to an ensemble of sys-
tems while accounting for the spins of both components and the
orbital mean motion, we use a dimensionless form of the angular
momentum that is applicable to binary systems with any absolute
size, mass, and separation. Starting from Eq. (1), when component
1 is nonspherical, the effective radius R1 is by definition abð Þ1=3a0,
the contribution of the (scaled) moments of inertia of the two com-
ponents to the spin angular momentum increases from 1þ q5=3 to
kþ q5=3, and the mean motion n includes the additional factor of
f a; b; �a; aið Þ1=2 compared to the two-sphere case. Upon simplifica-
tion, the total angular momentum J=J0 of a sphere and ellipsoid in
a fully synchronous orbit satisfies:

J
J0
¼ abð Þ�1=6 q

1þqð Þ13=6
�a1=2þ2

5
1

1þqð Þ7=6

1þb2

2
þ abð Þ2=3q5=3

 !
�a�3=2

" #
f a;b;�a;aið Þ½ �1=2

;

ð6Þ

recalling that �a ¼ a=a0. In the limit that the nonspherical compo-
nent approaches a sphere, a; b, and the integral f go to unity and �a
is equivalent to a=R1, which recovers the two-sphere case of Eq.
(1) explored by Taylor and Margot (2011) and shown in Fig. 1.

3.1. Angular-momentum, stability, and zero-energy limits

Three dynamical limits: the angular-momentum limit, the sta-
bility limit, and the zero-energy limit, break up the parameter
space of mass fraction and separation, and all three depend on
the shape of the nonspherical component of the binary system.
The angular-momentum limit follows from Eq. (6) by setting the
spin angular momentum (the term proportional to �a�3=2) to zero
and rearranging such that the maximum separation of the
components �amax ¼ amax=a0 for a given angular momentum J=J0 is
the numerical solution to:

Fig. 1. Component separation a, scaled to the contact limit, for the fully synchro-
nous orbits of a two-sphere binary system with mass fraction v and angular
momentum J=J0 . The black curves indicate the inner (when not within contact limit)
and outer synchronous orbits for J=J0 ¼ 0:25;0:4;0:44 and 0:5. The red dotted curve
is the zero-energy limit; tidal end states above this limit have negative energy
(E < 0) and must remain bound. The red dashed curve is the stability limit that
splits the unstable inner orbits in the gray regions from the stable outer orbits in the
white region. The darkest region above the solid red line represents the angular-
momentum limit for J=J0 ¼ 0:5 and is inaccessible to systems with J=J0 6 0:5. See
Section 3.1 and Taylor and Margot (2011) for details on these limits. A binary
system tidally evolves upward along a vertical line at mass fraction v, away from
the gray regions and into the white region, where it reaches the stable outer
synchronous orbit at the intersection with its corresponding J=J0 contour. A v ¼ 0:2
ðq ¼ 0:25Þ binary system with J=J0 ¼ 0:4 is shown evolving from a state initially near
contact.
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