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A B S T R A C T

The effects of finite amplitudes on the transverse oscillations of a quiescent prominence represented by a magnetic
rope are investigated in terms of the model proposed by Kolotkov et al. (2016). We consider a weakly nonlinear
case governed by a quadratic nonlinearity, and also analyse the fully nonlinear equations of motion. We treat the
prominence as a massive line current located above the photosphere and interacting with the magnetised dipped
environment via the Lorentz force. In this concept the magnetic dip is produced by two external current sources
located at the photosphere. Finite amplitude horizontal and vertical oscillations are found to be strongly coupled
between each other. The coupling is more efficient for larger amplitudes and smaller attack angles between the
direction of the driver and the horizontal axis. Spatial structure of oscillations is represented by Lissajous-like
curves with the limit cycle of a hourglass shape, appearing in the resonant case, when the frequency of the
vertical mode is twice the horizontal mode frequency. A metastable equilibrium of the prominence is revealed,
which is stable for small amplitude displacements, and becomes horizontally unstable, when the amplitude ex-
ceeds a threshold value. The maximum oscillation amplitudes are also analytically derived and analysed. Typical
oscillation periods are determined by the oscillation amplitude, prominence current, its mass and position above
the photosphere, and the parameters of the magnetic dip. The main new effects of the finite amplitude are the
coupling of the horizontally and vertically polarised transverse oscillations (i.e. the lack of a simple, elliptically
polarised regime) and the presence of metastable equilibria of prominences.

1. Introduction

Solar prominences are the condensations of plasma at temperatures of
about 104 K (typical for the chromosphere) floating in the much hotter
solar corona (with temperatures typically greater than 106 K) (see e.g.
Parenti, 2014, for a comprehensive review). The main questions related
to prominences concern the physical mechanisms involved in their for-
mation and evolution. Indeed, prominences can be generally distin-
guished in two categories: quiescent prominences, which are observed
floating in the low solar corona with time scales ranging from hours to
several days before to slowly fade out or dissolve; and erupting promi-
nences, which become unstable in the presence of particular physical
conditions. As a consequence of the prominence eruption, a coronal mass
ejection (CME) could be formed and expelled from the solar corona. The
loss of equilibrium can be caused by various reasons: eruptions can be
triggered by a nearby flare (Panesar et al., 2015), or in response to an
emergingmagnetic flux or variation of the local magnetic helicity (Yeates
and Mackay, 2009), or maybe due to the action of MHD waves, as

observed for some events before the eruption onset (see e.g. the discus-
sion in Shen et al., 2014a). Quiescent prominences are also very dynamic,
being a subject to MHD oscillations (Arregui et al., 2012), such as
transverse oscillations, for example triggered by a global coronal wave
(e.g. Hershaw et al., 2011; Asai et al., 2012), and longitudinal oscillations
(e.g. Vr�snak et al., 2007; Zhang et al., 2012; Luna et al., 2014). In turn,
based on the direction of the filament main axis displacements, trans-
verse oscillations can have horizontal (e.g. Kleczek and Kuperus, 1969;
Hershaw et al., 2011; Shen and Liu, 2012), or vertical polarisations (e.g.
Hyder, 1966; Eto et al., 2002; Okamoto et al., 2004; Kim et al., 2014;
Mashnich and Bashkirtsev, 2016). Furthermore, quiescent prominence
threads are also observed to experience more complicated, chaotic,
spatial dynamics during large amplitude oscillations (see e.g. Gilbert
et al., 2008; Takahashi, 2017). Complex behaviour of plasma in promi-
nences can be also described in terms of turbulent processes (Berger
et al., 2010; Leonardis et al., 2012). Such evidences may be strongly
affected by thermodynamic processes acting in prominences, which can
also influence the evolution of slow MHD waves (Kumar et al., 2016;
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Ballester et al., 2016). In addition, Kelvin–Helmholtz instability may take
place during oscillations of prominences, sustaining damping and plasma
heating (Antolin et al., 2014; Terradas et al., 2016). Also, the presence of
continuous transverse oscillations in prominences (Hillier et al., 2013)
may also be referred to as a self-oscillatory process caused by the inter-
action of plasma nonuniformities with a quasi-steady flow (Nakariakov
et al., 2016).

The equilibrium of prominences is thought to be of a magnetic origin
with the Lorentz force counteracting the gravity. In turn, gradient pres-
sure forces can provide an additional support. Considering this basic
idea, the following two-dimensional (2D) models of the prominence
equilibrium are the most popular: the Kippenhahn–Schlüter (KS, Kip-
penhahn and Schlüter, 1957) and the Kuperus–Raadu models (KR,
Kuperus and Raadu, 1974). The KS model considers the prominence as a
plasma slab embedded in the straight magnetic field lines with a dip
created by some external sources (e.g. photospheric currents). The
magnetic dip outlines a region of magnetic polarity inversion, which
justifies a general empirical evidence that prominences lie along the
polarity inversion line (also called a neutral line) of large extended bi-
polar regions (e.g. Bosman et al., 2012). In the KR model the prominence
is assumed to be a straight current-carrying horizontal wire located at
some height above the conductive photosphere. The support against the
gravity is provided by an upward magnetic force acting on the promi-
nence and caused by a virtual “mirror” current, which is located below
the photosphere and strictly symmetrical to the prominence. Interest-
ingly, the magnetic topology associated with the KR model resembles
that of a coronal cavity, that is a large quasi-circular structure observed
off limb in the extreme ultraviolet (EUV) band, and containing a prom-
inence in its interior (Habbal et al., 2010; Gibson et al., 2010).

In the last decades, starting from these two seminal works of KS and
KR, a number of studies of 2.5D and full 3D models of prominences have
been carried out, taking into account such observational aspects as the
presence of a current-aligned magnetic field component, magnetic
chirality, “barbs” or “feet” connecting the prominence to the photo-
sphere, Hα fibrils, flows, and their association to CMEs in case of erup-
tions. In this context, modelling of prominences supported in twisted flux
tubes (magnetic flux ropes) by linear force-free field was undertaken by
Aulanier and Demoulin (1998) and Aulanier et al. (1998), addressing the
natural presence of lateral feet and fibrils. A further approach is to
consider extrapolations from photospheric magnetic field data, and
comparemeasurements of prominence locations with the local dips in the
resulting coronal magnetic field configurations (Aulanier and D�emoulin,
2003; Su and van Ballegooijen, 2012). Blokland and Keppens (2011)
studied magneto-hydrostatic (MHS) equilibria for prominences by
reducing the MHS equations to an extended Grad–Shafranov equation,
and then numerically investigated the spectra of the oscillating structure.
A relaxation process is another approach to study the effect of support
against the gravity by the magnetic field, where the cold and dense
prominence plasma is injected into an initially unperturbed background,
and the subsequent evolution is studied numerically. Hillier and van
Ballegooijen (2013) studied equilibria for two distinct magnetic field
structures of an inverse polarity: a simple O-point configuration, and a
more complex one with an X-point. In the former case, the magnetic
tension of the field lines compressed at the base of the prominence and
stretched at its top is able to sustain prominences, while in the latter case
a convergence to a prominence equilibrium is not always guaranteed.
Terradas et al. (2013) investigated properties of MHD waves in normal
polarity prominences embedded in coronal arcades in terms of the
relaxation model too. Stable vertical fast and longitudinal slow MHD
oscillations were found. Luna et al. (2012) and Kra�skiewicz et al. (2016)
also considered prominences of a normal configuration, residing in a dip
formed by curved magnetic field lines. The effects of the magnetic field
geometry on longitudinal oscillations in prominences were addressed.

Despite their exceptional importance, the KS and KR models sepa-
rately are not able to provide an exhaustive picture on the transverse
oscillations observed in prominences. For example, the KR model alone

allows only for vertically polarised oscillations, while in the pure KS
model horizontally polarised oscillations cannot coexist with the verti-
cally polarised ones since the system becomes unstable (van den Oord
et al., 1998). A synthesis of these two models, that is a prominence
embedded in a magnetic field dip generated by two photospheric cur-
rents, accounting also for the effects of the prominence current interac-
tion with the conducting photosphere (via the inclusion of the mirror
current effect), has been recently developed in Kolotkov et al. (2016,
KNN16). The prominence has been modelled as a line current located
above the photosphere at a given height, thus being subject to the gravity
and Lorentz forces, which are attributed to the interaction between the
photospheric and prominence currents. Such a magnetostatic model,
despite its simplicity, provides straightforward results on the prominence
dynamics. In KNN16, horizontally and vertically polarised transverse
oscillations have been analysed in the linear regime, the equations of
motion analytically derived, and dependence of the oscillation properties
(e.g. the period) upon the parameters of the system (e.g. the currents in
the prominence and at the photosphere) has been determined. In addi-
tion, investigation of the mechanical stability of the system shows that
the prominence can be stable simultaneously in both horizontal and
vertical directions for a certain range of parameters.

In this work, we study oscillations of finite amplitude in terms of the
KNN16 model, addressing two main issues: determining the domain of
the applicability of the linear approximation derived in KNN16, and
responding to the observational detection of finite amplitude oscillations
in prominences (e.g. Tripathi et al., 2009). We show that the equations of
motion in the vertical and horizontal directions are nonlinearly coupled
with each other, in contrast to the linear regime where the motions are
essentially independent of each other. Therefore, the presence of
nonlinear terms in the governing equations makes the dynamics of the
system more various and rich. The paper is structured as follows: in Sect.
2 we present the model and the governing equations; in Sect. 3 we pro-
vide an analytical treatment of the equations of motion along the vertical
and horizontal directions in the presence of a weak nonlinearity, in Sect.
4 we present an analysis of the oscillation amplitudes and periods by the
consideration of a total energy of the system. Finally, discussion and
conclusions are provided in Sect. 5.

2. Model and governing equations

Consider a prominence as a horizontal line current i, located at the
height h above the plane photosphere in a magnetic dip produced by two
spatially separated photospheric line currents of the same strength I
parallel to the prominence current, with d being the half-distance be-
tween them (see Fig. 1, where the origin of the coordinate system co-
incides with the centre of the equilibrium current in the unperturbed
prominence). The magnetic configuration shown in Fig. 1 corresponds to
a normal polarity prominence, i.e. the polarity of the magnetic field lines
threading the prominence material coincides with that of the underlying
photospheric field (cf. Fig. 2 in Low and Zhang, 2002). Although prom-
inences of this type constitute about 10%–25% of the observed promi-
nences (see e.g. Leroy et al., 1984; Bommier et al., 1994; Parenti, 2014;
Ouyang et al., 2017), the flux ropes with a normal configuration are
usually observed in the vicinity of active regions (see e.g. Okamoto et al.,
2008; Guo et al., 2010; Kuckein et al., 2012; Sasso et al., 2014), and can
be responsible for fast CMEs (Low and Zhang, 2002). The horizontal
equilibrium of the prominence in such a magnetic system is provided
automatically because of the horizontal symmetry of the model, while
the vertical equilibrium is determined by the balance of the gravity force
Fg and three Lorentz forces F1, F2, and Fm acting on the prominence from
the external photospheric and mirror currents, respectively. In the pro-
jection onto the z-axis, the vertical equilibrium condition is

2k1h
d2 þ h2

þ k2
2h

¼ ℛg; (1)
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