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a b s t r a c t

The fractal perimeter dimension is a fundamental property of clouds. It describes the cloud shape and is
used to improve the understanding of atmospheric processes responsible for cloud shapes. von Savigny
et al. (2011) determined the fractal perimeter dimension of noctilucent clouds (or polar mesospheric
clouds) for the first time based on a limited data set of cloud images observed with the CIPS (Cloud
Imaging and Particle Size) instrument on board the AIM (Aeronomy of Ice in the Mesosphere) satellite.
This paper builds on von Savigny et al. (2011) by first presenting a sensitivity analysis of the
determination of the fractal perimeter dimension, and secondly presenting results on the seasonal and
interhemispheric differences of the perimeter dimension of noctilucent clouds (NLCs). The same method
as in the earlier study is applied to an extended data set of satellite images of noctilucent cloud fields
taken with the CIPS experiment. The sensitivity studies reveal that cloud holes play an important role for
the area–perimeter method, since excluding clouds with holes reduces the dimension value by up to 3%.
The results on the fractal perimeter dimension over six NLC seasons from 2007 to 2009 demonstrate that
the dimension values of the NLCs neither show significant differences between the seasons nor between
the hemispheres.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

NoctiLucent Clouds (NLCs) or Polar Mesospheric Clouds (PMCs)
are optically thin clouds at about 83 km altitude (e.g., Lübken et al.,
2008) exclusively occurring in the northern and southern polar
summer mesopause region around summer solstice from about
mid-May to mid-August in the northern hemisphere and from
about mid-November to mid-February in the southern hemi-
sphere. Summer upwelling and adiabatic cooling cause this to be
the coldest region of the Earth's atmosphere (e.g., Lübken, 1999),
which is essential for the NLCs, since they consist of water ice
particles. Their fascinating appearance might be attributed to the
fact that they shine in bluish and occasionally in orange colours,
but also to their fractal shape. Like most systems and objects in
nature clouds are fractals (Mandelbrot, 1991). Fractals are scale
invariant, statistically self-similar and highly irregular objects
featuring dimensions of non-integer values unlike the topological

dimensions of simple objects. The (multi-) fractal nature of clouds
results from the fractal nature of atmospheric dynamics. Scale
invariance in cloud radiances, for instance, is often used in order to
examine scaling models of atmospheric dynamics (e.g., Lovejoy
et al., 1992; Lovejoy and Schertzer, 2013). The fractal perimeter
dimension is a fundamental property of clouds. Lovejoy (1982)
determined this dimension for tropospheric cloud and rain fields,
and von Savigny et al. (2011) presented the fractal perimeter
dimension of NLCs.

In this paper, we describe the algorithm used by von Savigny
et al. (2011) in detail and discuss several aspects that affect the
determination of the fractal perimeter dimension, i.e., the influ-
ence of holes in cloud fields and artificial edges caused by the
border of the orbit scene. The non-negligible influence of holes on
the fractal perimeter dimension of clouds is particularly a feature
that has – to our best knowledge – not been discussed in any of
the existing studies on the fractal perimeter dimension of natural
objects. In addition, results on the fractal perimeter dimension of
NLCs for different seasons and hemispheres are presented.
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The fractal analysis of NLCs is based on orbit images of cloud
fields taken by the Cloud Imaging and Particle Size (CIPS) instru-
ment (McClintock et al., 2009) on board the NASA Aeronomy of Ice
in the Mesosphere (AIM) satellite (Russell et al., 2009). A specific
algorithm identifies cloud clusters exceeding a certain albedo
threshold and determines their area and perimeter. As the cloud
area varies over about three orders of magnitude, the area–
perimeter relation (Mandelbrot, 1991) is a reasonable method to
derive the fractal dimension, and is therefore used in this study.

The characteristic spatial length scales of these clouds range
from kilometers to thousands of kilometers, and it is an open
question as to which dynamic processes are responsible for their
shape and distribution. The physical processes in the upper
atmosphere, appearing on the same scales, are not well under-
stood. NLCs can act as a tracer of these unexplored phenomena in
the mesosphere. The AIM mission was established to explore the
relationship of NLCs and their atmospheric environment (Russell
et al., 2009). So far, temperature, water vapour, cosmic dust influx
(Thomas, 1996) and mesospheric dynamics (Hines, 1968; Turco
et al., 1982) are assumed to be responsible for the NLC formation.
In von Savigny et al. (2011) we suggested quasi-geostrophic 2-D
turbulence as a possible candidate for the relevant dynamical
mechanisms. The recent studies by Tuck (2010) and Schertzer et al.
(2012) – providing experimental and theoretical evidence –

suggest that scaling behaviour in atmospheric parameters is best
explained within the framework of generalised scale invariance,
rather than by 3-D or 2-D turbulence. A further possible candidate
are gravity waves. They appear in the same scale range as NLCs
and are assumed to be the more dominant mechanism in the
mesosphere compared to turbulence (Fritts and Alexander, 2003).
VanZandt (1982) presented power spectra of mesoscale horizontal
velocity fluctuations in the troposphere and lower stratosphere,
which show a −k 5/3 scaling behaviour that can be described by a
gravity wave model. Hoffmann et al. (2010), who investigated
energy spectra of meridional wind fluctuations in the upper
mesosphere based on radar measurements, found −k 5/3 scaling
behaviour from a temporal scale of 1 h up to the period of the
semi-annual tide.

2. Instrument and data

For the results presented in this paper, measurements from the
AIM CIPS instrument (McClintock et al., 2009) were used. AIM is
the first satellite mission dedicated to observing NLCs. It was
launched on April 25th, 2007, into a sun-synchronous, 600-km
altitude orbit, and began measurements on 24 May, 2007. The AIM
CIPS instrument provides daily images of small-scale NLC struc-
tures with high spatial resolution over an entire NLC season,
covering the polar region up to about 85° in latitude.

Details of the CIPS sampling and retrieval algorithm are
described by Lumpe et al. (2013). Briefly, CIPS comprises four
nadir-viewing, wide-angle cameras that measure scattered solar
radiation in a spectral passband of 26577.5 nm. The cameras are
arranged in a cross pattern, with a total instantaneous field of view
of 120° (along-track) by 80° (cross-track). This covers about

×2000 1000 km2 at the NLC height of about 83 km. On each orbit
27 four-camera images are acquired, one every 43 s. These images
are processed as described by Lumpe et al. (2013) yielding 15
individual orbits of data each day with 25 km2 (∼ ×5 5 km2) spatial
resolution. Orbits overlap at the highest latitudes to give full
coverage above about 70° latitude.

For any single location, CIPS measurements are made at a large
range of scattering angles, which enables determination of the
scattering phase function. Discriminating between NLC and back-
ground Rayleigh scattering takes advantage of the fact that

Rayleigh scattering is symmetric about a scattering angle of 90°,
whereas NLC scattering is weighted toward forward scattering
(Bailey et al., 2009; Lumpe et al., 2013). The NLC albedo, which is
the parameter analysed here, is calculated after subtracting the
Rayleigh scattering contribution to the total observed signal. It is
defined as the ratio of the NLC scattered radiance to the incoming
solar irradiance, in units of sr�1.

In this study, CIPS level 2 data were used. This data product
contains retrieved cloud parameters (albedo, particle radius, and ice
water content) on an orbit-by-orbit basis, with 25 km2 resolution.
Due to the variation of the scattering angle and view angle of the
observations along the orbit, the measurements are phase-com-
pensated, i.e., normalised to a scattering angle of 90° and a view
angle of 0°. Typically the albedo varies between 0�10�6 sr�1 and
100�10�6 sr�1, while very few values exceed 80�10�6 sr�1. CIPS
NLC frequencies and albedos have been shown to compare well
with measurements from the Solar Backscatter Ultraviolet instru-
ments by Benze et al. (2009, 2011).

Two different versions and time periods of the data set have
been considered in this work. We used v4.10 data for the NH 2007
NLC season. This is the same data as in von Savigny et al. (2011)
and is therefore also used here for the sensitivity studies. On the
other hand, for the extended data set from 2007 to 2009 for both
hemispheres, v4.20 data is used, as this is the current data version.
The slight difference between CIPS v4.10 and v4.20 data does not
influence the result of the fractal perimeter dimension.

3. Analysis method and algorithm

3.1. The area–perimeter relation

We examined the 2-dimensional CIPS cloud field scenes based
on the area–perimeter relation. Mandelbrot (1991) suggested
using this relation to investigate the structure of planar shapes.
For any family of standard planar objects, there exists the follow-
ing relation between area A and perimeter P:

∝ ⇔ ∝A P P A (1)2 1/2

Classic examples include smooth and simple objects like circles,
which have the exact relation of π=P A2 1/2 1/2, and squares with

=P A4 1/2. This relation is different for fractal objects featuring
contorted perimeters. Hence, another method to determine the
fractal dimension is necessary, which involves the so-called fractal
perimeter dimension D. The utilisation of D makes it possible to
derive a coherent relation between area and perimeter. The idea is
that the perimeter rises relative to the area with increasing
irregularity of the shape. The set of fractal curves, like the
perimeter of a fractal object, fills more space than a simple line.
This is expressed by the fractal dimension, which is then a number
between 1 and 2. Accordingly, the area–perimeter relation for
fractals is (Mandelbrot, 1991)

∝ ⇔ ∝A P P A . (2)D D2/ /2

Smooth perimeters with D¼1 would lead from the latter equation
to Eq. (1) and a perimeter with the highest degree of irregularity
(meaning that it fills a plane) would result in D¼2 and hence

∝P A.
In order to obtain D, it is common to examine objects with a

scaling behaviour of A(P) over at least two orders of magnitude.
Then the dimension can be estimated from the slope of a fit to the
data points in a double logarithmic plot (see Section 3.3).
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