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a b s t r a c t

Electron energy transport due to nonlinear plasma-wave and particle interactions is carried out by waves
and particles resonating with each other. Many previous nonlinear wave studies have only considered
the main resonance between waves and electrons, since the contributions from other resonant orders
were ignored as insignificant. We have found through test particle simulations, however, that although
independent separate contributions from higher-order resonances can be small, they can have a rather
significant impact on the main-order contribution and hence on the total nonlinear wave effects.
Contributions from different orders can interfere with each other and the overall nonlinear wave effect is
significantly different from that of just the major resonance. Therefore, in the nonlinear wave/particle
interaction regime, contributions from different resonant orders are inseparable and contributions from
higher order wave–particle resonances should all be included. Similarly, banded plasma waves should be
used in nonlinear wave studies instead of assuming monochromatic waves. When the essential factors
mentioned above are included, the overall electron transport due to the nonlinear plasma wave effects
takes the form of a diffusion-like process, rather than advection, as reported in many previous studies. It
is also found that electron transport induced by whistler mode waves is an important mechanism for the
formation of the electron butterfly pitch-angle distribution.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The effects of plasma waves on the Earth's radiation belt
electrons are often approximated by electron pitch angle and
energy diffusion, whose associated diffusion coefficients can be
calculated using the quasi-linear theory (Lyons, 1974; Glauert
and Horne, 2005; Summers, 2005). A few assumptions have to
be employed in order to apply the quasilinear theory to wave–
particle interactions. The first is that the wave amplitude is
relatively small; second, contributions from different wave–parti-
cle resonant orders are independent of each other (the main point
of this study) and third, wave damping or growth rates cannot be
large compared to the real part of the wave mode frequency ωr.
When the wave amplitude is large enough, non-linear effects such
as electron phase bunching and phase trapping (Roth et al., 1999,
Albert, 2000, 2002; Omura and Summers, 2006; Albert and
Bortnik, 2009; Bortnik et al., 2008; Bortnik and Thorne, 2010;
Liu et al., 2010; Tao et al., 2011) can occur when plasma waves

resonate with electrons under certain circumstances—for example,
when the waves and the electrons are in phase for a long time and
the wave amplitude is relatively large; these non-linear effects are
usually more efficient in accelerating the electrons to much higher
energy level or scattering them into the loss cone (Albert and
Bortnik, 2009; Bortnik et al., 2008; Bortnik and Thorne 2010).
Nonlinear wave effects therefore need to be addressed for the sake
of both scientific purposes and global space weather modeling and
forecasting.

The test particle method is a powerful tool for the investigation
of the nonlinear plasma wave–particle interactions. Numerous
studies had been conducted using test particle methods since
the 1960s (Bell, 1965, 1984; Dysthe, 1971; Nunn, 1971; Omura and
Matsumoto, 1982; Omura and Summers, 2006; Omura et al., 2007;
Inan et al., 1978; Bortnik and Thorne, 2010; Albert and Bortnik,
2009; Liu et al., 2010). Electron interactions with major plasma
waves in the magnetosphere such as chorus, electromagnetic ion
cyclotron (EMIC), and magnetosonic waves were investigated
using the test particle method. Nonlinear effects are clearly visible
when wave amplitudes are larger than a certain threshold value.
When wave amplitudes are small and quasilinear theory can be
applied, energy transport is dominated by electron energy diffu-
sion; and the corresponding diffusion coefficients obtained by
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quasilinear theory and test particle method agree perfectly (Tao
et al., 2011).

In the aforementioned studies, however, test particle simula-
tions of electron–wave interactions primarily focused on electron–
wave interactions during just one small fraction of a magnetic field
line along which the test electrons bounce back and forth. An
automatic question one would raise: what is the long-term
accumulative effects on electron energy transport imposed by
plasma waves? In our recent study (Zheng et al., 2012), we
extended the wave–electron interaction time and considered
multiple passes (many bounce periods) of electrons through the
wave region to see the long-term cumulative effects of wave–
particle interactions on electron behavior. Whistler-mode waves
were selected because of their common occurrences in the near-
Earth region, its potential significance to radiation belt dynamics
and diffuse auroral precipitation (Ni et al., 2011a,b), their narrow-
banded wave spectrum and the nonlinear wave–particle interac-
tions often associated with them (Yoon, 2011; Wilson et al., 2011;
Summers et al., 2011). With an assumed monochromatic, field-
aligned whistler mode wave and only first order counter-
streaming (i.e., n¼−1) resonance being considered, we found that
electron energy transport was more like energy advection instead
of diffusion and the electron energy of test electrons tended to
grow larger, while the electron pitch angles tended to decrease,
inversely correlating the energy advection—which coincides with
the simulation results reported by Roth et al. (1999).

We extend our previous study (Zheng et al., 2012) by conduct-
ing test particle simulations for more general, realistic cases to
investigate nonlinear plasma wave effects by including higher
orders or wave–particle resonances and employing banded whis-
tler mode waves instead of monochromatic waves. In our previous
study, we found that the electron energy transport by waves is
sensitive to η, the phase angle between the perpendicular compo-
nent of the electron velocity vector and the wave magnetic field,
because small perturbation of the electron phase would affect the
phase trapping time, which is highly related to energy advection.
The energy of test electrons will not change much if the electrons
are not in resonance with the plasma waves. The majority of
previous test particle investigations – including one of ours – were
based on nonlinear wave effects based on a set of seemingly
reasonable assumptions such as only the main resonance being
included, the wave being monochromatic and field aligned, etc. In
fact, some of the assumptions may not hold in more realistic cases
because of the sensitivity of energy transport to electron phase
change. Therefore, it is possible that these assumptions could
make much of the simulation results appear more heuristic than
being physically sound, as we will demonstrate later in our
simulation results.

2. Test particle method

The equation of motion of a charged relativistic particle
(electron in this work) in a magnetic field is

dp
dt

¼ qe Ew þ p
meγ

� Bw þ B0ðλÞ
� �� �

ð1Þ

where p¼ γmev is the electron momentum with γ ¼ c=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2−v2

p
the

Lorentz factor; me the particle rest mass; v the velocity vector; and
B, and E the wave magnetic and electric fields, respectively. B0 is
the Earth's magnetic field, which is approximated by a dipole field
in this study. The amplitude of B0 can be expressed as

B0ðL; λÞ ¼ BEarth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 3sin2λÞ

q
=ðL3cos6λÞ ð2Þ

Since we are interested in the electron–wave interaction in
Earth's dipole magnetic field, in which electrons undergo

gyromotion along the Earth's magnetic field line, it is advanta-
geous to solve Eq. (1) in a cylindrical coordination system along
the field line (Bell, 1984; Tao and Bortnik, 2010).

Assuming the whistler mode wave field takes the form

Bw ¼ ~BweiΨ ; ð3Þ
where Ψ≡

R
k�dr− R

ωdt is the wave phase, the wave electromag-
netic field amplitudes can be written as

Ew ¼−êxEwx sin Ψ−êyEwy cos Ψ−êzEwz sin Ψ

Bw ¼ êxBw
x cos Ψ−êyBw

y sin Ψ þ êzBw
z cos Ψ ð4Þ

The wave electromagnetic field components are not indepen-
dent and can be related by the plasma dispersion relation (Stix,
1992).

Ewx =B
w
y ¼ cðP−N2sin2θÞ

NPcosθ

Ewy =B
w
y ¼−

cDðP−N2sin2θÞ
NPcosθðS−N2Þ

Ewz =B
w
y ¼−

cNsinθ
P

Bw
z =B

w
y ¼ DsinθðP−N2sin2θÞ

PcosθðS−N2Þ
ð5Þ

where D, S, and P are the Stix parameters, N¼ jkjc=ω is the ratio of
the velocity of light to the wave phase velocity. k¼ kðsin θ;0; cos θÞ
is the wave vector, and θ is the wave normal angle. After some
mathematics, we obtain a set of three equations

dp==
dt

¼ ðeEwz J−n−ωRp⊥J−ðnþ1Þ þ ωLp⊥J−ðn−1ÞÞsin η−
p2⊥

2meγΩ

∂Ω
∂z

ð6Þ

dp⊥
dt

¼ ½ðp==−pRÞωRJ−ðnþ1Þ−ðp== þ pLÞωLJ−ðn−1Þ�sin ηþ p⊥p==
2meγΩ

∂Ω
∂z

ð7Þ

dη
dt

¼ nΩ
γ

þ k==v==−ω ð8Þ

where η is the gyroperiod-averaged phase angle between the
particle velocity vector in the x–y plane and the right-hand
circularly polarized component of the wave magnetic field
(Fig. 1), ω is the whistler mode wave frequency, and Ω is the
electron gyrofrequency. n is the resonant order of electron gyro-
resonance, and Jn ¼ Jnðk⊥p⊥=γmeΩÞ is the Bessel function of the
first kind with order n. PL, PR, ωL, and ωR are defined as follows:

pL ¼ γme
Ewx −E

w
y

Bw
x −B

w
y

ð9Þ

Fig. 1. Diagram of an electron interacting with a chorus wave. The electron bounces
back and forth along the magnetic field line between two mirror points.
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