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A B S T R A C T

We aim to investigate the connections existing between the density profiles of the stellar populations used to
define a gravitationally bound stellar system and their star formation history: we do this by developing a general
framework accounting for both classical stellar population theory and classical stellar dynamics. We extend the
work of Pasetto et al. (2012) on a single composite-stellar population (CSP) to multiple CSPs, including also a
phase-space description of the CSP concept. In this framework, we use the concept of distribution function to
define the CSP in terms of mass, metallicity, and phase-space in a suitable space of existence � of the CSP.

We introduce the concept of foliation of � to describe formally any CSP as sum of disjointed Simple Stellar
Populations (SSP), with the aim to offer a more general formal setting to cast the equations of stellar populations
theory and stellar dynamics theory. In doing so, we allow the CSP to be object of dissipation processes thus
developing its dynamics in a general non-Hamiltonian framework.

Furthermore, we investigate the necessary and sufficient condition to realize a multiple CSP consistent with
its mass-metallicity and phase-space distribution function over its temporal evolution, for a collisionless CSP.
Finally, analytical and numerical examples show the potential of the result obtained.

1. Introduction

Stars are the fundamental constituents of a galaxy. Our under-
standing of galactic structure and evolution depends very much on the
processes governing their birth, and evolution. The evolutionary time
scales of stars, their energy feedback, yields of chemically enriched
material into the interstellar medium, end products of their evolu-
tionary history, and distribution in space and time characterize the
structure of the galaxies and govern their evolution. However, all these
stellar phases and products are often subject to uncertainties of both
theoretical and observational nature, generating a lacking compre-
hension of these important issues. The effort to address these difficulties
must be carried on in a dual way: with the collection of new data and
with the development of new theoretical frameworks to interpret these
data.

In the era of wide-field surveys, dealing with exponentially growing
numbers of stars has become a challenge both for observational ana-
lyses and for their theoretical interpretation. In this contribution, we
will address the latter. The difficulties of dealing with a large number of
stars have influenced historically both the classical stellar dynamics and

the classic stellar population theories. In classical stellar dynamics,
from the few-body problem the attention moved to the mathematical
formulation of a many-body problem starting from the pioneering
works of Eddington, Chandrasekhar, and others who applied the con-
cepts of statistical mechanics (e.g., the Liouville and Boltzmann equa-
tion) and the theory of the potential to “groups of stars” subject to a
shared gravitational potential and hence described by a distribution
function (e.g., Heggie and Hut, 2003; Saslaw, 1985). In the second half
of the past century, a similar concept of ”stellar populations” was used
initially to address the fundamental equation of stellar statistics, the
star-count equation (e.g., Seeliger, 1898; Trumpler and Weaver, 1953).
This concept reached the astronomy research field thanks to the ob-
server W. Baade and finally proliferated in the Galaxy modeling field in
the 80s (see, e.g., Bahcall and Soneira, 1980; 1984; Bahcall, 1984;
Ratnatunga and Bahcall, 1985). In these works, the idea of stellar po-
pulation involves the photometry alone without phase-space treatment
(e.g., Gunn et al., 1981; Tinsley, 1972; 1973). The first works at-
tempting a global model generalization can be dated back to
Bienayme et al. (1987), Casertano et al. (1990) and Mendez and van
Altena (1996).
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We want to merge these two concepts of stellar populations coming
from classical stellar dynamics theory and classical stellar population
theory, with the goal to precisely define the minimum condition under
which these theories give consistent results. On the one hand, classical
stellar dynamics defines a composite stellar population by its density
profiles: its natural environment is the phase-space where position and
momentum determine the distribution of the stars in the phase-space.
On the other hand, classical stellar population theory defines a com-
posite stellar population through its star formation history and initial
mass function: its natural environment is the mass and metallicity space
within which the stars move according to the fuel consumption the-
orem. To formulate a comprehensive framework able to account for
both the theories is a difficult mathematical task. Here we limit our-
selves to the investigation of a simpler, but no less important, task that
tightly connects to the star-count modeling techniques. We cast the
problem in the following way: if both classical stellar dynamics and
classical stellar population theories determine the total mass of a
composite stellar population, which is the condition for these ap-
proaches to coincide? While for one composite stellar population the
answer is known, this is not true for two or more stellar populations. In
this work we will derive it for the first time (see also Pasetto et al.,
2018a).

In the literature, the concept of multiple stellar populations has long
tradition and it is extensively used to study a large variety of topics
(e.g., Tosi et al., 1991; Aparicio and Gallart, 1995; Aparicio et al., 1996;
1997; Bertelli and Nasi, 2001; Bournaud and Combes, 2002; Bertelli
et al., 2003; Gallart et al., 2005; Vallenari et al., 2006; Bertelli et al.,
2008; Tolstoy et al., 2009; Tantalo et al., 2010; Milone et al., 2012;
Cubarsi, 2014a; 2014b) even if it still poorly defined or lacking math-
ematical formalism (see, e.g., Salaris and Cassisi 2006 or Greggio and
Renzini 2011 for a review on the subject).

The most remarkable advancement in the mathematical treatment
of groups of stars (i.e., populations) probably happened at the begin-
ning of the past century with the introduction of continuous functions:
although stars are discrete elements, large gravitationally bound groups
of stars sharing common properties started to be studied using con-
tinuous distribution functions (DFs) and continuity relations, rather
than set-theory (i.e., stars by stars summations). This represented a
great advancement with respect to the Celestial mechanics punctual
treatment based on the 3-body/few-body problem, etc. In this work we
introduce novel mathematical instruments, as the foliations, to address
classical stellar population problems.

Pasetto et al. (2012) introduced a new theoretical framework for the
concept of stellar populations, and we here endorse and extend it to
include multiple composite stellar populations (CSPs). This formalism
has the advantage to include in the description of the classical dynamics
of a CSP (based on the concept of distribution functions as well) the
concepts that are natural to the theory of stellar populations (e.g., in-
itial mass function, star formation rate, etc.). In the treatment that we
are proposing, the star birth and death is formally included (hence
changing the total number of stars) without any limitation on the
nature of their dynamics. The formalism is correct both in the case of a
collisional CSP of globular clusters, and a collisionless CSP of a galaxy.
Furthermore, this formalism does not depend on the Hamiltonian
nature of the dynamics (see Section 4).

The application of this general concept to the Milky Way (MW) has
been presented in Pasetto et al. (2016) and will be reviewed briefly in
the next section. We start recalling some basic concepts and definitions
from Pasetto et al. (2012) and Pasetto et al. (2016) in Section 2.1. In
Section 2.2 we set the basis for the idea of multiple stellar populations.
In Section 2.3 we have a closer look at the necessary and sufficient
condition for a system of the composite stellar population to be co-
herent in mass. In Section 3 we present two numerical examples which
highlight the potential of the theory, in Section 4 we discuss our results
and in Section 5 we draw our conclusions. The mathematical aspects of
our work are detailed in Appendix A.

2. Theory of multiple composite stellar populations

2.1. Basic concepts of a non-Hamiltonian statistical mechanics for CSPs

A composite stellar population, or simply CSP, is a set of stars born
at a different time t, positions x, with different velocities v, masses M,
and chemical compositions Z. We assume that every star lives in the
space � = × × ΓM Z with �⊂ +M 0 masses, �⊂ +Z 0 metallicity, and

�≡ … ⊂Γ x v x v{ , , , , }N N N1 1 6 phase-space (N being the number of stars,
and �+

0 the set of positive real numbers including zero)(1). At each time
t, a single realization of a CSP can be defined as a the sth set of points

�∈Es defined by some arbitrary properties (i.e., the variable of state of
the CSP). Following classical statistical mechanics arguments, we con-
sider not such a single realization of a CSP (microstate), but an infinite
collection of the CSPs characterized by the same macroscopic state
average (e.g., energy, density, velocity dispersion, metallicity, etc.) but
different microscopic conditions, i.e., different microstates s. If a point
Es is representative of the sth-microstate we consider the set of all the {s,
q}: Es≠ Eq at any arbitrary t. Because the ensemble contains an infinite
number of states, the change of the state variables of each CSP happens
smoothly, i.e., continuously passing between neighboring states. This
allows us to describe the CSPs by a distribution function � �→ ⊂ +f I:c 0
with I finite interval of the real positive line including zero. Under this
hypothesis, the evolution of fc is given by the Liouville equation for non-
Hamiltonian systems (e.g., Colin, 1998) that we write as:

∂ + ∇ ∂ =g f g fx( ) , 0,t tx
1/2 1/2 (1)

with g(x; t) being the metric tensor of � introduced above, which is the
classic Liouville equation generalized to (non-Euclidean) dissipative
spaces, as we assumed � to be. Hereafter ∇x refers to the gradient over a
set of basis coordinates x, ⟨•, •⟩ to the inner product, and ∂t to the partial
derivative with respect to the time.2

Every time a system presents irreversibility, e.g., the system pre-
sents dissipative processes, gas-processes, friction, interaction, merges,
etc. it is non-Hamiltonian and non-Hamiltonian statistics has to be used
to describe its irreversible dynamics. We can express the Eq. (1) by
introducing the evolution operator �ι [•]:

�∂ =ι f f[ ],t c c (2)

with ι complex unit, ≡f g fc and [•]d
dt the total derivative operator.3

As mentioned above, in general the CSPs are non-Hamiltonian entities,
and their total number of stars is not conserved. The only hypothesis
that we require for Eq. (2) is that the DF is sufficiently smooth so that
the necessary derivatives exist; we will assume for simplicity that

�∈ ∞f C ( )c (i.e., the set of continuous functions with infinitely con-
tinuous derivatives). The formal solution of Eq. (2) is then

� � �= =− − + +f E t e f E e f E( ; ) [ ( ; 0)] [ ( ; 0)],c
ι t

c
ι t

c
( Λ ) (3)

where, mutating the name from quantum mechanics, we call �−e [•]ι t the
evolution propagator. Here we can decoupled the operator �[•] linearly,
in such a way that �[•] is split in a part granting the evolution and
normalization of fc given by (standard Liouville operator), and in a part
accounting for the compressibility of � in the case of external fields, say

1 The choice of the domain of existence is arbitrary and made to exploit the
following formalism. Other powerful solutions as �⊂ +M ( )N

0 for the space of
masses, �⊂Fe H[ / ] N for the space of metallicity, and �⊂Γ N6 for the phase-
space, can lead to a formalism in � � � �⊆ × ×+( )N N N

0
6 that is potentially

interesting but more distant from classical stellar population theory.
2 All these quantities exists because E is assumed to be a Riemannian mani-

fold.
3 The purpose of the multiplication by the imaginary constant is clearly to

obtain an equation similar to the Schrödinger equation, ∂ =ι ψ H ψℏ [ ],t with H[•]
the Hamiltonian operator, 2πℏ Plank’s constant, ψ wave function, and to work
with Hermitian operators (i.e., with real eigenvalues operators) even though we
will not exploit here this features of � .
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