
Contents lists available at ScienceDirect

New Astronomy

journal homepage: www.elsevier.com/locate/newast

DeltaComp: Fast and efficient compression of astronomical timelines

Sebastian Deorowicz⁎,a, Szymon Grabowskib

a Institute of Informatics, Silesian University of Technology, Gliwice, Poland
b Institute of Applied Computer Science, Lodz University of Technology, Łódź, Poland

A R T I C L E I N F O

Keywords:
Information systems
Data compression
Time-series data
Numerical methods

A B S T R A C T

Astronomical instruments commonly generate large data series in tabular format. To efficiently store and
transmit these data series, carefully designed compression formats are welcome. We propose DeltaComp, a free
open-source program suited for (relatively) smooth streams of data. DeltaComp is based on rather simple me-
chanisms; essentially it is a tailored combination of delta coding and context-based modeling. Following the
methodology of the preceding work presenting Polycomp (Tomasi, 2016), we compress (i) the ephemeris table of
Ganymede, and (ii) the publicly available timelines recorded by LFI, an array of microwave radiometers aboard
the ESA Planck spacecraft. In the former case (with small data) the compression ratio advantage of DeltaComp
over Polycomp is by a factor of about 1.4. For the Planck data, of size 4.24TB, the archives produced by
DeltaComp are almost six times smaller than those from Polycomp, at somewhat smaller median quantization
error (and much smaller maximum error), which translates to only 66GB of required storage. Importantly,
DeltaComp is over three orders of magnitude faster than Polycomp.

1. Introduction

Astronomy is one of several fields (including also bioinformatics and
high energy physics) in which modern instruments produce huge vo-
lumes of data (Stephens et al., 2015), for example, the Australian
Square Kilometre Array Pathfinder (ASKAP) project acquires several
terabytes of sample image data per second and upon completion it is
expected to require storage of size about 1 exabyte (= 1018 bytes) per
year. Merely storing those data is challenging and demands appro-
priately specialized data compression techniques, formats and related
tools. Representing data succinctly is beneficial not only for storage and
transmission costs, but may also speed up computations (analyses) by
reducing I/O processing.

In astronomy, it is quite typical to deal with tabular numeric data,
with strong correlation in columns. Recently, Tomasi (2016) presented
Polycomp, a configurable compression tool to handle astronomical
timelines. For example, one of the experiments presented in his paper
was to compress (a portion of) the recently released Planck timelines
(Planck Collaboration ES, 2015), limited to the timelines of the Low
Frequency Instrument (LFI), which require over 4TB of disk space. His
algorithm, described in detail in Section 3, applies differential encoding
to the input data, then approximates them through polynomials of some
(possibly low) order, and at the end applies a compressor from an ex-
isting library (zlib or bzip2). This is a lossy scheme, involving quanti-
zation, which means that the original input can only be approximately

recovered during the decompression. The maximum error per input
sample is a program parameter (with a clear tradeoff between the
maximum error and the attained compression ratio).

In this work, we simplify and improve the Polycomp approach. We
do not (explicitly) apply polynomial approximation, but use a higher-
order differential coding. Our backend compression is also more ap-
propriate to the obtained output of the transform. As a result, our al-
gorithm, DeltaComp, achieves a compression ratio about an order of
magnitude higher than Polycomp on, e.g., the timelines of the LFI in-
strument onboard the Planck spacecraft. The compression reduces the
storage from 4.24TB, in the uncompressed form, to about 66GB, for a
reasonable lossy setting. In speed, the difference is even more striking
in favour of DeltaComp.

2. Data compression basics

We start with a few definitions. A compression algorithm takes an
input {di} of n symbols, of b bits each, and compresses them to mb bits.
In practice, b is often 8, which corresponds to bytes (letters of text,
pixels of greyscale images etc. are often kept in single bytes) or 32 (32-
bit integers, single-precision floating-point numbers), or 64 (double-
precision floating-point numbers). The compression ratio is defined as

=C n m/r . If Cr is very close to 1, we say that the input data are in-
compressible (at least with the applied algorithm). In many domains,
including measurement data in astronomy, we are satisfied with lossy

https://doi.org/10.1016/j.newast.2018.06.006
Received 26 February 2018; Received in revised form 8 May 2018; Accepted 12 June 2018

⁎ Corresponding author.
E-mail address: sebastian.deorowicz@polsl.pl (S. Deorowicz).

New Astronomy 65 (2018) 59–66

Available online 15 June 2018
1384-1076/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/13841076
https://www.elsevier.com/locate/newast
https://doi.org/10.1016/j.newast.2018.06.006
https://doi.org/10.1016/j.newast.2018.06.006
mailto:sebastian.deorowicz@polsl.pl
https://doi.org/10.1016/j.newast.2018.06.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.newast.2018.06.006&domain=pdf


compression, which means that the decompressed (recovered) data may
only approximate the input submitted to the compression procedure.
Many error measures are used in lossy compression (e.g., for multi-
media data), yet here, following Tomasi (2016), we characterize the
quality of the approximation by the maximal error

= − ∼
= … d dϵ max ,c i n i i1 where ∼di are the decompressed symbols.

Data compression techniques consist of modeling and coding. The

modeling phase is the way to look at the input data: they may be per-
ceived as bits, bytes, pixels, words, 64-bit floating-point numbers, and
so on. They may be transformed in different ways, in order to seek for
various kinds of repetitions and regularities. The output of the modeling
phase is submitted to a coder, which basically works according to the
golden rule of compression: shorter codewords should be assigned to
frequent (i.e., more probable) symbols, and longer codewords to the
symbols which are rare.

Let us now briefly present some compression techniques. They are
essentially lossless, but at least some of them are often used, as com-
ponents, in lossy solutions. More information on the presented ideas
can be found, e.g., in Salomon and Motta (2010).

2.1. Run-length encoding (RLE)

RLE is probably the simplest and most obvious compression tech-
nique, with very limited applications. It replaces runs of the same

original data d0 d1 d2 d3 d4 d5 bytes for d3

1.67570799242307356 34910583 34910583 34910583 34910583 34910583 34910583 {246, 2, 20, 177, 119}

1.67760573897480803 34950120 39537 -34871046 -69781629 -104692212 -139602795 {247, 4, 40, 200, 125}

1.67950255680698390 34989637 39517 -20 34871026 104652655 209344867 {246, 2, 20, 22, 242}

1.68139843250048204 35029134 39497 -20 0 -34871026 -139523681 {0}

1.68329335261744162 35068612 39478 -19 1 1 34871027 {2}

1.68518730370098435 35108069 39457 -21 -2 -3 -4 {3}

1.68708027227493873 35147506 39437 -20 1 3 6 {2}

1.68897224484356157 35186922 39416 -21 -1 -2 -5 {1}

1.69086320789126776 35226317 39395 -21 0 1 3 {0}

1.69275314788235054 35265691 39374 -21 0 0 -1 {0}

1.69464205126071166 35305043 39352 -22 -1 -1 -1 {1}

1.69652990444958496 35344373 39330 -22 0 1 2 {0}

1.69841669385126504 35383681 39308 -22 0 0 -1 {0}

1.70030240584683567 35422967 39286 -22 0 0 0 {0}

1.70218702679589717 35462230 39263 -23 -1 -1 -1 {1}

1.70407054303629546 35501470 39240 -23 0 1 2 {0}

1.70595294088385296 35540686 39216 -24 -1 -1 -2 {1}

1.70783420663209706 35579879 39193 -23 1 2 3 {2}

1.70971432655199407 35619048 39169 -24 -1 -2 -4 {1}

1.71159328689167856 35658193 39145 -24 0 1 3 {0}

1.71347107387618691 35697314 39121 -24 0 0 -1 {0}

1.71534767370719066 35736410 39096 -25 -1 -1 -1 {1}

1.71722307256272999 35775481 39071 -25 0 1 2 {0}

1.71909725659694868 35814526 39045 -26 -1 -1 -2 {1}

1.72097021193983091 35853546 39020 -25 1 2 3 {2}

1.72284192469693442 35892540 38994 -26 -1 -2 -4 {1}

1.72471238094913093 35931508 38968 -26 0 1 3 {0}

1.72658156675234209 35970449 38941 -27 -1 -1 -2 {1}

1.72844946813728040 36009364 38915 -26 1 2 3 {2}

1.73031607110918406 36048251 38887 -28 -2 -3 -5 {3}

Fig. 1. Delta coding on a small sample of quantized LFI27M data (Θ angles). Five rounds of delta coding shown. The most successful number of rounds is 3 and for the
respective obtained values our byte coding variant is applied (the rightmost column).

Table 1
Ganymede compression ratios and compression times (in seconds), per co-
ordinate. Polycomp worked with 48 threads, DeltaComp was single-threaded.

Algorithm Ratio Compression time

x y z x y z

Polycomp 13.15 13.26 24.35 93.21 93.46 35.80
DeltaComp 17.89 18.15 35.70 0.30 0.33 0.27

Table 2
Planck compression ratios and times. Times are given in format h:mm. Polycomp time estimated for 24-core Xeon machine. DeltaComp times for parallel execution of
the algorithm for various datasets using 24 cores.

Algorithm Max. error Med. error Compression ratios Compression times

[marcsec] [marcsec] 30 GHz 44 GHz 70 GHz 30 GHz 44 GHz 70 GHz

Polycomp* 1000 ∼ 30 7.39 9.18 12.67 4340 7360 31060
DeltaComp 500 ∼ 250 76.61 91.02 121.95 1:36 2:57 8:32
DeltaComp 50 ∼ 25 44.05 53.69 73.40 1:36 2:57 7:42
DeltaComp 5 ∼ 2.5 23.17 29.47 41.48 2:24 4:08 8:39
DeltaComp 0.5 ∼ 0.25 12.58 15.96 22.39 3:00 5:26 11:58

S. Deorowicz, S. Grabowski New Astronomy 65 (2018) 59–66

60



Download English Version:

https://daneshyari.com/en/article/8141255

Download Persian Version:

https://daneshyari.com/article/8141255

Daneshyari.com

https://daneshyari.com/en/article/8141255
https://daneshyari.com/article/8141255
https://daneshyari.com

