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• We included the oblateness coefficient up to the second zonal harmonics.
• We examined the existence of the out-of-plane equilibrium points.
• We investigated the effects of the zonal harmonics on the out-of-plane equilibrium points.
• We investigated the effects of the zonal harmonics on stability of these points.
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a b s t r a c t

This article examines the effects of the zonal harmonics on the out-of-plane equilibrium points of Robe’s

circular restricted three-body problem when the hydrostatic equilibrium shape of the first primary is an

oblate spheroid, the shape of the second primary is an oblate spheroid with oblateness coefficients up to the

second zonal harmonic, and the full buoyancy of the fluid is considered. It is observed that the size of the

oblateness and the zonal harmonics affect the positions of the out-of-plane equilibrium points L6 and L7. It is

also observed that these points within the possible region of motion are unstable.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The out-of-plane points have no analogy in the classical restricted

three-body problem. However, these points were first examined in

the photogravitational restricted three-body problem by Radzievskii

(1950). Afterward, many researchers, for example, Douskos and

Markerllos (2006) and Singh and Leke (2010), worked on the

out-of-plane points and all presented interesting results.

A new kind of restricted three-body problem was formulated

by Robe (1977), in which the first primary of mass m1 was a rigid

spherical shell, filled with a homogeneous, incompressible fluid of

density ρ1, the second primary was a point mass m2 outside the shell;

and the third primary of mass m3 was a small solid sphere of density

ρ3 moving inside the shell. He assumed that the mass and radius of

m3 are infinitesimal, and showed the center of the first primary as an

equilibrium point and examined its linear stability in two cases. In

the first case, the orbit of m2 around m1 is circular, and in the second

case, it is elliptic; however, the shell is empty (no f luid inside it), or

the densities ρ1 and ρ3 are equal (Fig. 1).

During the evaluation of buoyancy force, Robe (1977) as-

sumed that the pressure field of the fluid with density ρ1 has a
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spherical symmetry around the center of the shell, because of its own

gravitational field. The remaining two components are attraction of

m1, arising from the centrifugal force, and attraction of m2. All these

components of the pressure field are included in the study of Robe’s

problem by Plastino and Plastino (1995). However, they assumed the

hydrostatic equilibrium shape of the first primary as a Roche ellip-

soid. They also established conditions for the existence of libration

points and their stability.

Singh and Sandah (2012) investigated the equilibrium points and

their stability in the Robe’s circular restricted three-body problem

when the hydrostatic equilibrium shapes of the first and second pri-

maries are similar, that is, an oblate spheroid. Singh and Mohammed

(2013) extended Hallan and Mangang’s (2007) work by assuming the

second primary as a triaxial rigid body. Their most interesting and

distinguishable results were the existence of elliptical and off-plane

points, and their stability. Singh and Sandah (2012) considered only

the first zonal harmonic in deriving the expression for the oblateness

of the second primary.

The aim of this article is to include the aforementioned oblateness

coefficients up to the second zonal harmonic and to investigate the

out-of-plane equilibrium points, and their linear stability.

This article is divided into five sections, including this section of

introduction. The next section describes the equations of motion.

The positions of the out-of-plane points are studied in Section 3,
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Fig. 1. Robe’s circular restricted three-body problem.

The first primary of mass m1 is a rigid spherical shell, filled with a homogeneous, in-

compressible fluid of density ρ1; the second one is a point mass m2 outside the shell;

and the third body of mass m3 is a small solid sphere of density ρ3 moving inside the

shell.

and their stability and conclusion are provided in Sections 4 and 5,

respectively.

2. Equations of motion

We assume that the first primary of mass m1 is a fluid of density

ρ1 with an oblate spheroid shape, and the second primary of m2 is

also an oblate spheroid with oblateness coefficients up to the second

zonal harmonics. The mass m2 moves in a circular orbit around m1,

and the infinitesimal mass m3 moves inside the first primary. Con-

sidering a uniformly synodic coordinate system 0x1x2x3, where the

center of m1 is the origin, 0x1 points toward m2, and 0x1x2, being the

orbital plane of m2, coincides with the equatorial plane of m1. Then,

the equations of motion of the infinitesimal mass of density ρ3 in this

coordinate system, as provided by Singh and Sandah (2012) and Singh

and Omale (2014), are given as:
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Here, the mean radius of m2 is R2, and J2 and J4 are the zonal

harmonic coefficients that characterize the size of the nonspherical

components of the potential. The potential due to the combined

forces acting upon the infinitesimal mass is V, B denotes the poten-

tial due to the fluid mass of the first primary, B′ denotes the potential

due to the second primary, R is the distance between the primaries, G

is the gravitational constant, n is the mean motion, a1 and a2 are the

equatorial and polar radii of the first primary, I stands for the polar

moment of inertia, and Ai (i = 1, 2) are the index symbols.

We assume that the sum of the masses and the distance between

the primaries is unity. Thus, we let m2 = μ, 0 < μ = m2
(m1+ m2)

< 1.

The unit of time is also selected such that G = 1. On the basis of these

assumptions, the equations of motion in Eq. (2.1) are given as:
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0 < μ < 1, α1, α2, α3 � 1, D = 1 − ρ1

ρ3

.

Eq. (2.2) provides the equations of motion of the infinitesimal

mass under the influences of the full buoyancy force of the fluid,

oblateness, and gravitational forces of the primary bodies. They dif-

fer from those of Hallan and Mangang (2007) on the presence of the

first two zonal harmonic coefficients of the second primary, and from

those of Singh and Sandah (2012) on the appearance of their second

zonal harmonic coefficient.

3. Positions of out-of-plane equilibrium points

These points are the solutions of the following equations:
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= 0, with x2 = 0 and D �= 0, (3.1)

that is
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