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h i g h l i g h t s

� A ‘‘hybrid approximative scheme’’ (HAS) is developed and discussed in detail.
� Computations by HAS focus on maximum-mass critically rotating polytropic models.
� Comparisons show that HAS derives numerical results with satisfactory accuracy.
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a b s t r a c t

We develop a ‘‘hybrid approximative scheme’’ in the framework of the post-Newtonian approximation
for computing general-relativistic polytropic models simulating neutron stars in critical rigid rotation.
We treat the differential equations governing such a model as a ‘‘complex initial value problem’’, and
we solve it by using the so-called ‘‘complex-plane strategy’’. We incorporate into the computations the
complete solution for the relativistic effects, this issue representing a significant improvement with
regard to the classical post-Newtonian approximation, as verified by extended comparisons of the
numerical results.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The original contributions to the study of rapidly rotating
neutron stars in the framework of the ‘‘post-Newtonian approx-
imation’’ (PNA) are due to Chandrasekhar (1965), Krefetz (1967),
and Fahlman and Anand (1971). The problem of fast rigid rotation
of neutron stars in hydrostatic equilibrium is treated in Fahlman
and Anand (1971) by considering the relativistic and rotational
effects acting on a nonrotating Newtonian configuration obeying
the polytropic ‘‘equation of state’’ (EOS, EOSs). However, there
are certain reasons leading the PNA of first-order in the gravitation
parameter r to failure when r P 0:01. A discussion on this matter
can be found in Tooper (1965) (Appendix). A further discussion
((Fahlman and Anand, 1971), Section 5) verifies the negative con-
clusions of Tooper (1965) and focuses on the imposed limitations
when applying this PNA’s scheme to several astrophysical objects,
since, unfortunately, values of interest lie in the vicinity of r ’ 0:1.

In a recent study (Geroyannis and Karageorgopoulos, 2014), we
revisit the problem by assuming the relativistic and rotational
effects as decoupled perturbations, and by applying to PNA the
so-called ‘‘complex plane strategy’’ (CPS). This method consists in
solving all differential equations involved in the PNA’s com-
putational scheme in the complex plane. Numerical integrations
are resolved by the Fortran code DCRKF54 (Geroyannis and Valvi,
2012), which is a Runge–Kutta–Fehlberg code of fourth and fifth
order, modified so that to integrate ‘‘initial value problems’’ (IVP,
IVPs) established on systems of first-order ‘‘ordinary differential
equations’’ (ODE, ODEs) of complex-valued functions in one
complex variable along prescribed complex paths.

As discussed in Geroyannis and Karageorgopoulos (2014)
(Section 5.2), CPS could proceed independently of the particular
perturbation approach used. For instance, CPS could be applied to
a PNA’s scheme of up to second order in r, as developed in
Chandrasekhar and Nutku (1969). But, most interesting, CPS could
cooperate with a ‘‘hybrid approximative scheme’’ (HAS) of PNA
((Geroyannis and Karageorgopoulos, 2014), Section 5.2), in which
the complete solution of the relativistic distortion, as developed
in Tooper (1965), is involved. In this study, we extend the
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numerical experiments started in Geroyannis and
Karageorgopoulos (2014) (Section 5.2), by applying HAS to gen-
eral-relativistic polytropic models of critically rotating neutron
stars with r up to � 0:8 (holding for n ¼ 0:5).

We do not intend to repeat here extended parts of Geroyannis
and Karageorgopoulos (2014), except for certain significant issues.
For clarity and convenience, we use the same conventions, def-
initions, and symbols with those in Geroyannis and
Karageorgopoulos (2014).

2. The hybrid approximative scheme

2.1. Preliminaries

In this study, we assume that the pressure p and the rest-mass
density q obey the polytropic ‘‘equation of state’’ (EOS)

p ¼ K qC ¼ K q1þ 1=nð Þ; ð1Þ

where K is the polytropic constant, C the adiabatic index defined by
C ¼ 1þ ð1=nÞ;n the polytropic index, and the normalization equa-
tions for the rest-mass density q and the coordinate r are defined by

q¼qc H
n; r¼ ðnþ1Þpc

4pGq2
c

� �1=2

n¼ ðnþ1ÞKq 1=nð Þ
c

4pGqc

" #1=2

n¼an; ð2Þ

where qc is the central density, Hðn; lÞ (with l ¼ cosð#Þ) the Lane–
Emden function, pc the central pressure, and G the gravitation con-
stant. The central density qc is chosen to be the density unit in the
so-called ‘‘classical polytropic units’’ (cpu), and the model parame-
ter a is chosen to be the length unit in cpu; accordingly, Hn is the
cpu measure of the rest-mass density q and n the cpu measure of
the coordinate r.

The ‘‘rotation parameter’’ t, representing the effects of rotation,
and the ‘‘gravitation parameter’’ r (also called ‘‘relativity para-
meter’’), representing the post-Newtonian effects of gravitation,
are then defined by (Geroyannis and Karageorgopoulos, 2014,
Eqs. (7a) and (7b), respectively)

t ¼ X2

2pGqc
; r ¼ 1

c2

pc

qc
: ð3Þ

In the framework of PNA, the function Hðn;lÞ can be expressed
as (Geroyannis and Karageorgopoulos, 2014, Eq. 9)

Hðn;lÞ ¼
X4

i¼0; 2

PiðlÞHiðnÞ

¼ a0 h00ðnÞP0ðlÞ þ a1 h10ðnÞP0ðlÞ þ A12h12ðnÞP2ðlÞ½ �
þ a2 h20ðnÞP0ðlÞ þ h22ðnÞ þ A22h12ðnÞ½ �P2ðlÞf
þ h24ðnÞ þ A24h14ðnÞ½ �P4ðlÞg þ a3 h30ðnÞP0ðlÞ; ð4Þ

where ai are the perturbation parameters (Fahlman and Anand,
1971, Eq. (24)): a0 ¼ 1;a1 ¼ t;a2 ¼ t2, and a3 ¼ r. The functions
hij are involved in the differential equations (Geroyannis and
Karageorgopoulos, 2014, Eq. (12))

d2hij

dn2 þ
2
n

hij

dn
� jðjþ 1Þ

n2 hij ¼ Sij ð5Þ

with i ¼ 0; 1; 2; 3, and j ¼ 0; 2; 4, solved in view of the initial condi-
tions (26) of Geroyannis and Karageorgopoulos (2014). The parame-
ters Aij (Geroyannis and Karageorgopoulos, 2014, Eqs. (24)–(25))
multiply properly the homogeneous solutions of hij (Fahlman and
Anand, 1971, Eqs. (42) and (43)), so that the boundary conditions
(16) of Geroyannis and Karageorgopoulos (2014) be satisfied. The
functions Sij are given by Eq. (13) of Geroyannis and
Karageorgopoulos (2014).

2.2. The numerical method

We now consider HAS as a computational scheme applied on
PNA of Geroyannis and Karageorgopoulos (2014), in which the
relativistic distortion participates with its complete solution, as it
has been developed and computed in Tooper (1965). By substitut-
ing the complete solution Hr for the relativistic effects in the place
of the sum a0 h00ðnÞ þ a3 h30ðnÞ (Geroyannis and Karageorgopoulos,
2014, Eq. (57)), we obtain the form

Hðn;lÞ ¼ Hr P0ðlÞ þ a1 h10ðnÞP0ðlÞ þ A12h12ðnÞP2ðlÞ½ �
þ a2 h20ðnÞP0ðlÞ þ h22ðnÞ þ A22h12ðnÞ½ �P2ðlÞf
þ h24ðnÞ þ A24h14ðnÞ½ �P4ðlÞg: ð6Þ

To compute the function Hr, we use the Oppenheimer–Volkoff
equations of hydrostatic equilibrium (cf. Tooper, 1965, Eqs. (19)
and (20)),

dHr

dn
¼ � 1

n2 !r þ rn3 Hnþ1
r

� � 1þ ðnþ 1ÞrHr½ �
1� 2r ðnþ 1Þ!r=n

; ð7Þ

!0r ¼ n2 Hn
r 1þ rnHrð Þ; ð8Þ

where the function !r is defined by (cf. Tooper, 1965, Eq. (18))

mðrÞ ¼ 4pa3 qc!rðnÞ; ð9Þ

mðrÞ is the total mass interior to a sphere of radius r (cf. Tooper,
1965, Eq. (12)). In the Newtonian limit r ¼ 0, Eqs. (7) and (8) reduce
to the classical Lane–Emden equation (Eq. (5) with i ¼ j ¼ 0). In the
relativistic case r > 0;Hr is the total distortion owing to relativistic
effects and can be written as (Geroyannis and Karageorgopoulos,
2014, Eq. (57))

Hr ¼ h00 þ
X1
i¼1

ri h3ði�1Þ: ð10Þ

The PNA’s scheme in Geroyannis and Karageorgopoulos (2014)
includes terms of first order in r; in this case, the sum in Eq. (10)
contains the single term rh30. When with infinite terms, the sum
in Eq. (10) becomes equal to Hr � h00. The computational basis of
HAS consists in using the complete solution in the relativistic dis-
tortion and perturbation terms of up to second order in t with
respect to the rotational distortion.

The initial conditions for solving the differential Eqs. (5), (7),
and (8) are written as (cf. Geroyannis and Karageorgopoulos,
2014, Eqs. (26))

h00 ¼ 1;
dh00

dn
¼ 0; at n ¼ 0;

hij ¼ 0;
dhij

dn
¼ 0; i ¼ 1; 2; j ¼ 0; at n ¼ 0;

hij ¼ n j;
dhij

dn
¼ jnj�1; i ¼ 1; 2; j P 2; n 2 dð0Þ;

ð11Þ

where the interval dð0Þ lies in the vicinity of zero, and

Hr ¼ 1; !r ¼ 0: ð12Þ

2.3. The complex-plane strategy

Eq. (5) yields for i ¼ j ¼ 0 the classical Lane–Emden equation,
which, integrated along a prescribed interval In ¼ ½nstart ¼
0; nend� � R with initial conditions (11a,b) gives the Lane–Emden
function h00½In � R� � R. To avoid the indeterminate form h000=n at
the origin, we start integration at a point nstart ¼ n0 close to the ori-
gin. Since n0 is small, the initial conditions (11a,b) are valid at the
starting point n0 as well. So, the integration interval becomes
In0 ¼ ½n0; nend� � R.
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