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�Matching two RN de-Sitter solutions across the singular surface.
� Linearized radial perturbations around static solutions.
� Stability analyses of thin shell wormholes are proposed.
� The regions of stability are greatly increased for large values of charge.
� The regions of stability are greatly increased for large values of K.
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a b s t r a c t

Using the Darmois–Israel formalism the dynamical analysis of Reissner Nordstrom de-Sitter thin shell
wormholes, at the wormhole throat, are determined by considering linearized radial perturbations
around static solutions.

The region of stability in the presence of a large value of charge is significantly increased. Also, the
region of stability in the presence of a positive large value of cosmological constant is significantly
increased.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The study of the dynamics of a shell separating two back-
grounds in the context of general relativity has been developed
in a powerful and direct formalism since the pioneer work of
Israel (1966) and applied to the charged shell by Kuchar (1968).
It has been applied to cosmology, mainly to inflation, Berezin
et al. (1987), and to modeling the dynamics of the border between
two regions in different states, like bubbles or between two given
spaces, Sato (1988). The linearized stability analysis of spherical
shells was carried out by several authors. For instance, Kim
(1992) analyzed Schwarzschild-de Sitter wormholes, using the
cut-and-paste construction.

The formalism was applied to bubbles, shells around stars and
black holes, and in the construction of thin-shell wormholes (with

spherical, plane and also cylindrical throats;see for example, Lobo
and Crawford (2005), Visser (1996), Eiroa and Simeone (2004)).
Besides, thin shells are associated to gravastars, for which the sta-
bility was also studied, Lobo and Arellano (2007). Poisson and
Visser (1995) analyzed a thin-shell wormhole, constructed by past-
ing together two copies of the Schwarzschild solution.

This paper is organized as follows. In Section 2 the Darmois–
Israel formalism is briefly reviewed. Match an interior RN de-
Sitter spacetime to an exterior RN de-Sitter spacetime, the dynami-
cal equations of thin shell wormholes are given in Section 3. The
linearized stability analysis of wormholes is given in Section 4. A
general conclusion is given in Section 5. Also adopt the units such
that c ¼ G ¼ 1.

2. The Darmois–Israel Formalism

Consider two distinct spacetime manifolds Mþ and M� with
metrics given by gþlmðx

l
þÞ and g�lmðxl

�Þ, in terms of independently
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defined coordinate systems xl
�. The manifolds are bounded by

hypersurfaces Rþ and R�, respectively, with induced metrics g�ij .
The hypersurfaces are isometric, i.e. gþij ðnÞ ¼ g�ij ðnÞ ¼ gijðnÞ, in terms
of the intrinsic coordinates, invariant under the isometry. A single
manifold M is obtained by gluing together Mþ and M� at their
boundaries, i.e. M ¼ Mþ [M�, with the natural identification of
the boundaries R ¼ Rþ ¼ R�. The second fundamental forms
(extrinsic curvature) associated with the two sides of the shell are:

K�ij ¼ �n�c
@2xc

@ni@n j
þ Cc

ab

@xa

@ni

@xb

@n j

 !
..
.
R ð1Þ

where n�c are the unit normal 4-vector to R in M, with nlnl ¼ 1 and

nlel
i ¼ 0. The Israel formalism requires that the normal point from

M� to Mþ. For the case of a thin shell Kij is not continuous across R,
so that, the discontinuity in the second fundamental form is defined
as ½Kij� ¼ Kþij � K�ij . The Einstein equation determines the relations
between the extrinsic curvature and the three dimensional intrinsic
energy momentum tensor are given by the Lanczos equations,

Sij ¼ �1
8p
ð½Kij� � ½K�gijÞ ð2Þ

where ½K� is the trace of ½Kij� and Sij is the surface stress-energy ten-
sor on R. The first contracted Gauss- Kodazzi equation or the
‘‘Hamiltonian’’ constraint

Glmnlnm ¼ 1
2
ðK2 � KijK

ij � 3RÞ; ð3Þ

with the Einstein equations provide the evolution identity

Sij �Kij ¼ �Tlmnlnm � K
8p

� �þ
�
: ð4Þ

The convention, ½X� ¼ Xþ � X�, and �X ¼ 1
2 ðX

þ þ X�Þ, is used. The
second contracted Gauss–Kodazzi equation or the ‘‘ADM’’
constraint,

Glmel
i nm ¼ K j

i;j � K ;i; ð5Þ

With the Lanczos equations gives the conservation identity

Si
j;i ¼ Tlmel

i nm� �þ
�: ð6Þ

The surface stress-energy tensor may be written in terms of

the surface energy density r, and surface pressure p: Si
j ¼ diag�

ð�r; p; pÞ. For spherically symmetric thin shell, the Lanczos
equations reduce to

r ¼ �1
2p
½Kh

h� ð7Þ

p ¼ 1
4p
ð½Ks

s� þ ½K
h
h�Þ: ð8Þ

If the surface stress-energy terms are zero, the junction is
denoted as a boundary surface. If surface stress terms are present,
the junction is called a thin shell.

3. Dynamics of thin shell wormhole

The matching of two Reissner Nordstrom de-Sitter space–times
of M�, given by the following line elements:

ds2
� ¼ �F�ðrÞdt2 þ F�1

� ðrÞdr2 þ r2ðdh2 þ sin2 hdu2Þ ð9Þ

with

F� ¼ 1� 2m�
r
þ q2

�
r2 �

1
3

K�r2

where m�, q� and K� are the gravitational mass, the charge and the
cosmological constant outside and inside the shell. The suffix ‘+’
denotes a quantity evaluated just outside the shell and ‘�’ just
inside the shell. Let the equation of the shell be r� ¼ R�ðsÞ, the his-
tory of the shell is described by the hypersurface xa

� ¼ xa
�ðs; h;uÞ, in

the regions M�, respectively; the function RðsÞ describes the time
evolution of the shell. The non-trivial components of the extrinsic
curvature are given by

Kh�
h ¼ Ku�

u ¼ 1
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F� þ _R2

q
ð10Þ

Ks�
s ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F� þ _R2

q m�
R2 �

Q 2

R3 þ €R� 1
3

KR

 !
ð11Þ

Note that _R ¼ dR=ds, where the parameter s measures proper
time along the wormhole throat. Therefore, the Lanczos equations
are given by

r ¼ �1
2pR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F� þ _R2

q� �
ð12Þ

p ¼ 1
4pR

1� m�
R � 2

3 KR2 þ _R2 þ R€Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F� þ _R2

q
2
64

3
75 ð13Þ

Therefore, the energy conservation can be written in the form:

_r ¼ �2 _R
R
ðrþ pÞ ð14Þ

In this equation, the first term corresponds to a change in the
throat’s internal energy, while the second term corresponds to
the work done by the throat’s internal forces. Rearranging equation
(12) to get the equation of motion of thin shell wormhole,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F� þ _R2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fþ þ _R2

q
¼ M

R
ð15Þ

where M ¼ rA is the rest mass of the shell, (A ¼ 4pR2). This equa-
tion can be written in the form

_R2 þ VðRÞ ¼ 0 ð16Þ

where

VðRÞ ¼ �M2

4R2 þ
1
2
ðF� þ FþÞ �

R2

4M2 ðF� � FþÞ2 ð17Þ

is the effective potential. This dynamical equation completely
determines the motion of the wormhole throat.

4. Stability analyses

From (14), with p ¼ pðrÞ, the conservation equation isZ
dR
R
¼ �1

2

Z
dr

rþ pðrÞ ð18Þ

This relationship may then be formally inverted to: p ¼ pðRÞ.
Then, the dynamical equation (15) can be written in the form

_R2 þ F� � ð2pRrÞ2 ¼ 0 ð19Þ

where

VðRÞ ¼ F� � ð2pRrÞ2 ð20Þ

In the case of the static solution where, _R ¼ €R ¼ 0, and the char-
acteristic constants are r�, R�, and p�, the Eqs. (12) and (13) are:

r� ¼
�1

2pR�

ffiffiffiffiffiffiffi
F��

p
ð21Þ
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