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h i g h l i g h t s

�We study dimensions and structures of primary components of nonsynchronous binaries.
� First approximation theory of Limber (1963) has been used for this study.
� Nonsynchronism affects dimension and structures of primary components of binaries.
� Effects increases as difference of rotational and orbital velocities increase.
� Effect of rotation is more than the effect due to revolution and tidal forces.
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a b s t r a c t

Rotating stars and stars in the synchronous binaries have been extensively studied in literature. However,
there are only few studies that have investigated the problems of the nonsynchronous binaries. In the
present paper, we have made an attempt to study the various dimensions and equilibrium structures
of the primary component of the nonsynchronous binaries. We have used the first approximation theory
of Limber (1963) along with the methodology as that proposed by Mohan and Saxena (1983) for the pres-
ent study. The objective of this paper is to check the effect of nonsynchronism on the various dimensions
and equilibrium structures of the primary components of the binary systems. The results of the present
study shows that there is change in the dimensions and equilibrium structures of the primary component
of the binary systems due to nonsynchronism, and this change is more appreciable when the difference
between the angular velocities of rotation and revolution is large.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the major cases of astrophysical significance only synchro-
nous rotation is assumed. This is supported by the theoretical cal-
culations of the Zahn (1977) that considers the tidal interaction
between the components of the binary system to be responsible
for synchronization. There are various studies in the literature that
have investigated – in detail – the various problems of the synchro-
nous binaries. Authors such as Eggleton (1983), Jackson (1970), Ko-
pal (1959), Kuiper and Johnson (1956), Lal et al. (2006, 2009),
Martin (1970), Mochnacki (1984), Mohan and Saxena (1983,
1990), Plavec and Kratochvil (1964) and SirotKin and Kim (2009)
have made a significant progress in investigating the various prob-
lems of the dimensions and/or equilibrium structures of the syn-
chronous binary systems.

Since the discovery of the nonsynchronous rotation (when the
angular velocity of one or both components of the binary system
differs from the orbital angular velocity) by Schlesinger in the spec-
troscopic binary d Lib in 1909 and in the eclipsing binary k Tau in
1910 (c.f. Tassoul 1978), the nonsynchronous rotation has been de-
tected in numerous binary systems of various types. The nonsyn-
chronism in binary systems has been the subject of several
investigations. The literature has been reviewed by Struve
(1950), Levato (1974), Habets and Zwaan (1989), Meibom et al.
(2006) and van Hamme and Wilson (1990). The effect of the non-
synchronism on the dimensions and shapes of the binary systems
was first studied by Plavec (1958). Further investigations were
then carried by Csataryova and Skopal (2005), Kruszewski
(1963), Limber (1963), Lubow (1979), Naylor (1972) and Sepinsky
et al. (2007).

The effect of the nonsynchronism has been neglected as it not
only complicates the analysis but the theory of synchronism has
been successful for long in explaining the various observational as-
pects of the binaries. Also, the nonsynchronism in binary systems
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induces time – dependent oscillations in the atmospheres of the
component stars. As a result, these components can no longer be
treated as static with respect to a rotating frame of reference, un-
less the time scale of the oscillatory motions is sufficiently long as
that compared to the dynamical time scale of the star. The validity
of this approximation was first discussed by Limber (1963) for the
case of nonsynchronous binary stars. He concluded that as long as
the rotational angular velocities of the stars do not deviate consid-
erably from synchronicity, the components may be approximated
as static and their shapes may be determined by the instantaneous
equipotential surfaces of the binary. Limber (1963) also found that
the approximation is valid in the limiting case of stars rotating
with angular velocities close to the break up angular velocity due
to the dominance of the centrifugal force over the gravitational
forces.

Mohan and Saxena (1983) have studied the equilibrium struc-
tures of the polytropic models of the uniformly rotating stars and
stars in the binary systems. In this study authors have used the
equation of the Roche equipotential as that derived by Kopal
(1972) for synchronous binaries. They have used this equation to
study the equilibrium structures of the uniformly rotating single
stars, purely tidally distorted stars (no rotation) and synchronous
binaries. Furthermore, authors have used the same equation for
studying the nonsynchronous binaries (they have assumed that
for nonsynchronous binaries, 2n–qþ 1 where n and q are the
parameters of distortion due to rotation and tidal forces, respec-
tively). However, it is not justified in the framework of the assump-
tions considered in their study because the basic equipotential
equation that the authors have used, has been derived for synchro-
nous binaries (Kopal 1972), and not for nonsynchronous binaries.
This methodology to study the equilibrium structures of nonsyn-
chronous binaries has been subsequently used by Mohan et al.
(1990) and Lal et al. (2006). However, using the first approximation
theory of Limber (1963) that considers the more general case of
nonsynchronous binaries (single rotating stars and synchronous
binaries are the particular cases of this theory), we can justify
the use of the Roche equipotential for the nonsynchronous binaries
as that done by Mohan and Saxena (1983).

Keeping these factors in view, in the present paper, we have
studied in detail the various dimensions and equilibrium struc-
tures of the primary component of the nonsynchronous binaries.
For this purpose, we have used the first approximation theory of
Limber (1963) that represents the more general case of the non-
synchronous binaries. We have also used the methodology as that

proposed by Mohan and Saxena (1983) that utilizes the averaging
technique of Kippenhahn and Thomas (1970) along with the cer-
tain results on the Roche equipotential as that given by Kopal
(1972). The objective of the present paper is to check that how
the nonsynchronism affects the various dimensions and equilib-
rium structures of the primary component of the nonsynchronous
binaries.

The paper is organized as follows: The expression for the Roche
equipotential of the nonsynchronous binary systems has been ob-
tained in Section 2. This expression of the Roche equipotential has
been then used in Section 3 to obtain the expressions for the var-
ious dimensions of the primary component of the nonsynchronous
binaries. In Section 4, the equations governing the equilibrium
structures of the polytropic models of the primary component of
the nonsynchronous binary systems have been obtained. The
expressions for the volumes and surface areas of such polytropic
models of the stars are obtained in Section 5. Numerical computa-
tions have been performed in Section 6 to compute the various
dimensions and equilibrium structures of the primary component
of the nonsynchronous binaries. Certain conclusions of astrophys-
ical importance have been drawn in the final Section 7.

2. Roche equipotential of the nonsynchronous binaries

Consider a binary system in which the two components are
rotating about their axis of rotation and also revolving about an
axis passing through the center of mass of the system. Let M1

and M2 be the masses of the two components (primary and sec-
ondary, respectively) of the binary system that are separated by
distance D. Suppose that the position of the two components of
such a binary system is referred to a frame of reference with origin
at the center of gravity of the primary star, X� axis along the line
joining the mass centers of the two stars, Z� axis perpendicular to
the plane of the orbit of the two components, and which rotates
with the constant angular velocity X.

Let r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD� xÞ2 þ y2 þ z2

q
and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� d1Þ2 þ y2 þ z2

q
represent the distances of a point P(x, y,

z) from the centers of gravity of the primary star, secondary star
and the center of gravity C (ðd1;0;0Þ where d1 ¼ M2D=ðM1 þM2Þ)
of the system, respectively. Let x denote the angular velocity of
revolution of the system about a line parallel to Z� axis which
passes through the center of gravity C of the system and is perpen-
dicular to the XY� plane. Following the first approximation theory
of Limber (1963), the two components of the binary system are as-
sumed to be Roche models (This approximation is reasonably valid
for the stars that have high degree of central condensation. Accord-
ing to Limber (1963), in any case this assumption can be replaced
by more realistic models of stars without any fundamental changes
in the theory). Also, it is assumed that the actual mass motions
within the primary component of the binary system can be in-
cluded for the most part in a simple uniform rotation about its cen-
ter (The assumption of uniform rotation is also not fully justified.
The work of Spruit and Phinney (1998) and Spruit (1999) give evi-
dence in support of the uniform rotation; whereas, Popper and Pla-
vec (1976) and Domiciano de Souza et al. (2003) have claimed
differential rotation for single and binary stars. However, to avoid
complexity in obtaining the final expression for the Roche equipo-
tential surface, the star in a question is assumed to be rotating
uniformly).

Following Limber (1963) and Kopal (1972), for such a system
the total potential at an arbitrary point P, in nondimensional form
can be written as

w� ¼ 1
r�1
þ q

1
r�2
� x�2

1þ q
x�

� �
þX�2

2
x�2 þ y�2
� �

þx�2

2
q

1þ q

� �2

ð2:1Þ

Table 1
Various parameters used in the manuscript.

S.
no

Parameter Definition

1 n The rotation parameter that represents distortions due to
revolution

2 n1 The rotation parameter that represents distortions due to
rotation

3 q The tidal parameter that represents distortions due to
tidal effects

4 x1 First Lagrangian point (Point radius) of the primary
component

5 n1 The value of critical Roche equipotential at first Lagrangian
point (Roche limit)

6 x01 Back radius of the primary component
7 y2 Side radius of the primary component
8 x2 x – coordinate corresponding to the side radius of the

primary component
9 z1 Pole radius of the primary component
10 / The angle at which the resulting RES intersects the X� axis

at first Lagrangian point
11 V Volume of the primary component
12 S Surface area of the primary component

2 A. Pathania, T. Medupe / New Astronomy 26 (2014) 1–11



Download	English	Version:

https://daneshyari.com/en/article/8141503

Download	Persian	Version:

https://daneshyari.com/article/8141503

Daneshyari.com

https://daneshyari.com/en/article/8141503
https://daneshyari.com/article/8141503
https://daneshyari.com/

