#### New Astronomy 26 (2014) 106-111

Contents lists available at ScienceDirect

## New Astronomy

journal homepage: www.elsevier.com/locate/newast

# Constraints on Dark Energy state equation with varying pivoting redshift

Dario Scovacricchi<sup>a</sup>, Silvio A. Bonometto<sup>a,b,c</sup>, Marino Mezzetti<sup>a,b,\*</sup>, Giuseppe La Vacca<sup>d,e</sup>

<sup>a</sup> Trieste University, Physics Department, Astronomy Unit, Via Tiepolo 11–13, 34143 Trieste, Italy

<sup>b</sup> I.N.A.F. – Trieste Astronomical Observatory, Italy

<sup>c</sup> I.N.F.N. – Sezione di Trieste, Italy

<sup>d</sup> Milano–Bicocca University, Physics Department, Piazza della Scienza 3, 20126 Milano, Italy

<sup>e</sup> I.N.F.N. – Sezione di Milano–Bicocca, Italy

### HIGHLIGHTS

• We assume the DE state equations  $w(a) = w_0 + w_a(a_p - a)$ .

• We study the dependence of  $w_0$  and  $w_a$  on  $a_p = 1/(1 + z_p)$  by using COSMOMC code.

• We consider both massless and massive neutrinos.

• The  $z_p$  values at which  $w_0$  and  $w_a$  become independent differs in the two cases.

• At these  $z_n$ , constraints on  $w_0$  are narrower than at other redshifts.

#### ARTICLE INFO

Article history: Received 19 February 2013 Received in revised form 5 July 2013 Accepted 15 July 2013 Available online 23 July 2013

Communicated by J. Silk

Keywords: Cosmology Dark Energy CosmoMC Cosmological parameters Neutrinos

## ABSTRACT

We assume the DE state equations  $w(a) = w_0 + w_a(a_p - a)$ , and study the dependence of the constraints on  $w_0$  and  $w_a$  coefficients on the pivoting redshift  $1 + z_p = 1/a_p$ . Coefficients are fitted to data including WMAP7, SNIa (Union 2.1), BAO's (including WiggleZ and SDSS results) and  $H_0$  constraints. The fitting algorithm is CosmoMC. We find specific differences between the cases when *v*-mass is allowed or disregarded. More in detail: (i) The  $z_p$  value yielding uncorrelated constraints on  $w_0$  and  $w_a$  is different in the two cases, holding ~ 0.25 and ~ 0.35, respectively. (ii) If we consider the intervals allowed to  $w_0$ , we find that they shift when  $z_p$  increases, in opposite directions for vanishing or allowed *v*-mass. This leads to no overlap between  $1\sigma$  intervals already at  $z_p >~ 0.4$ . (iii) The known effect that a more negative state parameter is required to allow for *v* mass displays its effects on  $w_a$ , rather than on  $w_0$ . (iv) The  $w_0-w_a$ constraints found by using any pivot  $z_p$  can be translated into constraints holding at a specific  $z_p$  value (0 or the  $z_p$  where errors are uncorrelated). When we do so, error ellipses exhibit a satisfactory overlap. © 2013 Elsevier B.V. All rights reserved.

#### 1. Introduction

Owing to the conceptual problems of ACDM, a number of options for Dark Energy (DE) nature have been considered. In particular, DE could be a scalar field, necessarily self-interacting and possibly interacting with Dark Matter Damour et al., 1990; Wetterich, 1995; Amendola, 2000; Amendola and Quercellini, 2001; Dalal et al., 2001; Amendola and Tocchi Valentini, 2002; Mainini and Bonometto, 2004; Maccio' et al., 2004; Mainini and Bonometto, 2006, 2007; Bento and Bertolami, 2009; Bento et al., 2008; Zimdahl et al., 2001; del Campo et al., 2006; Wei and Zhang, 2007; Amendola et al., 2007a,b,c; Guo et al., 2007; Caldera-Cabral

\* Corresponding author at: Trieste University, Physics Department, Astronomy Unit, Via Tiepolo 11–13, 34143 Trieste, Italy. Tel.: +39 0403199126; fax: +39 040309418.

et al., 2009; Pettorino et al., 2012, or just a phenomenological consequence of large scale GR violations (Capozziello et al., 2006; Amendola et al., 2007a,b,c; Creminelli et al., 2009; Park et al., 2010; Bloomfield and Flanagan, 2012). But neither these options, nor still more exhotic hypotheses (Tomita, 2000; Celerier, 2000; Tomita, 2001; Iguchi et al., 2002; Jimenez et al., 2012), led to appreciable improvements of the fit between theory and data (Colombo et al., 2009; Mainini, 2009; Kristiansen et al., 2010).

The problem has then been tackled from the phenomenological side, by testing whether any linear w(a), different from  $w(a) \equiv -1$ , improves data fits. A possible option amounts then to express the linear laws through the equations

$$w(a) = w_0 + w_a(1 - a)$$
(1)

aiming then at testing how various sets of data yield constraints on  $w_0$  and  $w_a$ . Here *a* is the scale factor, normalized to unity at the





E-mail address: mezzetti@oats.inaf.it (M. Mezzetti).

<sup>1384-1076/\$ -</sup> see front matter @ 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.newast.2013.07.005

present time. In the literature, this expression for w(a) was first used by Chevallier and Polarski (2001).

The same linear laws can be expressed also through the equations

$$w(a) = w_{0,a_p} + w_{a,a_p}(a_p - a),$$
(2)

which differ from (1) for selecting a non-vanishing pivoting redshift

$$z_p = 1/a_p - 1,$$
 (3)

while we put an extra index to the linear coefficients  $w_{0,a_p}$ ,  $w_{a,a_p}$  to put in evidence that, when changing  $z_p$ , their values change. The straight lines defined by Eq. (1) and Eq. (2) are however the same: any Eq. (2) turns into an Eq. (1) if we set

$$w_{0,a_p} = w_0 - w_a(a_p - 1) \tag{4}$$

and  $w_{a,a_p} = w_a$ . Notice that this last identity does not imply that limits on  $w_{a,a_p}$  are independent from the pivoting redshift. In the sequel, whenever this causes no confusion, we shall however follow the common use and call  $w_0$ ,  $w_a$  the two parameters in any expression (2).

Linear laws can be fitted to data by using different  $a_p$  values. Here we aim at testing, first of all, how compatible are results obtained when varying the pivoting redshift.

We shall do so in two cases: either neglecting or allowing the option that  $M_{\nu} = \sum_{\nu} m_{\nu} \neq 0$  (the sum is extended to the mass eigenvalues for 3 standard neutrino flavors). Let us also remind that the neutrino density parameter

$$\Omega_{\nu}h^{2} = 1.08 \times 10^{-2} (M_{\nu}/\text{eV}) (T_{0\nu}/2.73 \text{ K})^{3}, \tag{5}$$

so that, when the dark matter reduced density parameter  $\omega_c = \Omega_c h^2$  is assigned, the neutrino fraction  $f_v = \Omega_v / \Omega_c$  immediately follows.

The value of  $a_p$  can be selected so to have uncorrelated phenomenological constraints on  $w_0$  and  $w_a$ . Here we also wish to put in evidence that: (i) the pivoting redshift yielding uncorrelated constraints is different, if  $f_v \equiv 0$  or can be  $\neq 0$ ; (ii) also the dependence on  $a_p$  of the  $w_0$  interval compatible with data depends on the above option.

We expect that the DE state parameter *w* takes lower values, even in the phantom domain, when  $M_v$  is allowed. We shall test how this occurs, when we consider a wide set of data (see below). In particular, by allowing for (linearly) variable *w*, we can test whether data require a constantly low  $w_0$  or a progressively decreasing law, set by a negative  $w_a$ .

In the recent literature, the set of linear w(a) has also been parametrized by using the values taken by w at z = 0 and at a higher redshift, e.g. z = 0.5. In spite of advantages of this parametrization (Wang, 2008), quite a few authors still keep to the old one. We plan to deepen the relation with such approach in further work.

### **2.** Results for $z_p = 0$ .

Let us then report, first of all, the results of Monte Carlo fits of DE state equations vs. data, performed by using the algorithm CosmoMC<sup>1</sup> (Lewis et al., 2000; Lewis and Bridle, 2012, May 2010 version); the CosmoMC code was integrated with the first version of the PPF module<sup>2</sup> for CAMB<sup>3</sup> (Lewis et al., 2000; Fang et al., 2008). Fits were performed in respect to the following parameters:  $w_0$ ,  $w_a$  (in Eq. 2) and  $\omega_b = \Omega_b h^2$ ,  $\omega_c = \Omega_c h^2$ ,  $\theta = 100 l_s/l_a$ ,  $\tau$ ,  $n_s$ , log A,  $A_{SZ}$ , plus  $f_v$  when needed (respectively: reduced baryon density parameter, reduced CDM density parameter, 100 times the ratio between sound horizon at recombination and its angular diameter distance, optical depth due to

reionization, primeval spectral index, logarithmic fluctuation amplitude with pivoting scale 0.05 Mpc<sup>-1</sup>, SZ template normalization, neutrino fraction as defined below; *h* is the Hubble parameter in units of 100 (km/s)/Mpc). We however kept  $\Omega_k = 0$ .

Our data set includes CMB data from WMAP7,<sup>4</sup> supernovae from Union2.1 survey (Suzuki, 2012, option with no systematic errors), WiggleZ and SDSS BAO's data (Blake et al., 2011; Percival, 2010), HST data (Riess et al., 2009) and CMB lensing as provided by CosmoMC. We use different combinations of these data, as suitably detailed below.

In Fig. 1 we show  $1\sigma$  and  $2\sigma$  contours for the marginalized likelihood on the  $w_0-w_a$  plane, when  $z_p = 0$ , for the sets of data indicated in the frame. In comparison with the analogous curves shown in WMAP7 report Komatsu et al., 2011 for  $f_v = 0$ , our ellipses are slightly displaced towards more negative  $w_0$  and greater  $w_a$ . The ranges found are closer to the Union 2.1 report by Suzuki (2012).

To gauge the widening of  $w_0$  and  $w_a$  intervals when  $M_v \neq 0$  is allowed, we kept the same abscissa and ordinate ranges in both sides. The widening is confirmed when fully marginalizing in respect to all other parameters, as is shown in Table 1. Let us however notice that, when  $M_v \equiv 0$  is required, the inclusion of BAO and/or HST data in top of CMB, causes a displacement towards smaller values of the mean  $w_0$  and an increase of  $w_a$ . These shifts – just below  $1\sigma$  – do not occur (or are much smaller) when  $M_v \neq 0$ .

In Fig. 2 we show the likelihood distributions on the  $f_v - w_0$  and  $f_v - w_a$  planes, outlining a progressive delving of  $w_a$  into the negative domain when  $f_v$  shifts from 0 to 0.04 (i.e., when  $M_v$  shifts from 0 to ~0.60 eV). The known result that a greater  $M_v$  is allowed, when w delves in the phantom area, therefore affects  $w_a$  rather than  $w_0$ , so indicating that, to soften  $M_v$  limits, it seems preferable that w shifts below -1 just when z > 0.

More in detail, if constant *w* models only are considered, as in Komatsu et al. (2011) or De Bernardis et al. (2008), one finds that, to compensate a massive neutrino component, DE density fading more rapidly than in  $\Lambda$ CDM, as *z* increases, is favored. As is known, even for  $M_{\nu} \sim 0.1$  eV, neutrino derelativization is complete before z = 100. Since then, the whole linear fluctuation spectrum evolves  $\propto (1 + z)^{-1}$  until the spectral growth is slowed down by DE acquiring a significant density. If *w* is constant and < -1, DE density becomes significant later than in  $\Lambda$ CDM; a later slow down compensates the spectral depression, which is one of the consequences of neutrino mass. For instance, De Bernardis et al., 2008 found a constant  $w = -1.12 \pm 0.09$ . With our wider dataset, we found  $w = -1.11^{+0.05}_{-0.04}$ , an almost coincident result, apart of a halvened  $(1\sigma)$  errorbar.

When *w* linear variations are allowed, errors become greater, as expected. The central point of  $w_0 (\simeq -1.07)$  however rises up to the  $1\sigma$  limit for constant–*w* models, while *w* tends to become negative because of  $w_a$ . This means a different timing in the reduced slowing down. A natural guess is that data coming from the epoch when DE starts to become significant, e.g. WiggleZ data, are better fitted by an early spectrum not only higher than  $\Lambda$ CDM, but even higher than a  $w \simeq -1.12$  phantom model.

#### **3.** Results for $z_p \neq 0$

Let us then consider the fits when pivoting redshifts  $z_p \neq 0$  are considered. In Fig. 3 we overlap the  $2\sigma$  contour ellipses on the  $w_0$ - $w_a$  plane, for  $z_p = 0$ , 0.25, 0.35 and 0.5, both for  $f_v = 0$  (l.h.s.) and  $\neq 0$  (r.h.s.). For the sake of clarity, we consider only the full set of observational constraints (CMB+SN+BAO+HST). The ellipses exhibit a progressive straightening of the symmetry axes and  $w_0$ - $w_a$  errors

<sup>&</sup>lt;sup>1</sup> http://www.cosmologist.info/cosmomc

<sup>&</sup>lt;sup>2</sup> camb.info/ppf

<sup>&</sup>lt;sup>3</sup> http://www.camb.info/

<sup>&</sup>lt;sup>4</sup> Provided by the website lambda.gsfc.nasa.gov

Download English Version:

# https://daneshyari.com/en/article/8141525

Download Persian Version:

# https://daneshyari.com/article/8141525

Daneshyari.com