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a b s t r a c t

We investigate the cosmological implications of the generalized and extended uncertainty principle
(GEUP), and whether it could provide an explanation for the dark energy. The consequence of the GEUP is
the existence of a minimum and a maximum length, which can in turn modify the entropy area law and
also modify the Friedmann equation. The cosmological consequences are studied by paying particular
attention to the role of these lengths. We find that the theory allows a cosmological evolution where
the radiation- and matter-dominated epochs are followed by a long period of virtually constant dark
energy, that closely mimics the ΛCDMmodel. The main cause of the current acceleration arises from the
maximum length scale β , governed by the relation Λ ∼ −β−1W (−β−1). Using recent observational data
(the Hubble parameters, type Ia supernovae, and baryon acoustic oscillations, together with the Planck
or WMAP 9-year data of the cosmic microwave background radiation), we estimate constraints to the
minimum length scale α ≲ 1081 and the maximum length scale β ∼ −10−2.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The observation that the universe is accelerating [1,2] has gen-
erated extensive investigations aiming to establish its theoretical
foundation. A promising possible explanation involves invoking
the cosmological constant Λ, which is related to the vacuum en-
ergy density. For consistencywith existing observations,Λmust be
very small, on the scale of ∼ 10−120, orders of magnitude smaller
than the Planck scale Mp. However, the exact value gives rise to
the ‘‘cosmological constant problem’’ [3]. Another possibility is a
dynamic dark energy model [4–6], in which the cosmological con-
stant varies dynamically. Arguably, observational data favor dy-
namical dark energy models over the standard ΛCDMmodel [7,8].
One possible way to describe dynamic dark energy models is as a
generalization of Heisenberg’s uncertainty principle.

Early applications of this principle concerned mainly black-
hole thermodynamics [9–11], but more recently also cosmolog-
ical topics, such as inflation [12,13], non-singular universe con-
struction [14,15] and the dark energy model [16,17]. The un-
derlying idea is that a generalization of the principle can mod-
ify the entropy-area relation in thermodynamics, thereby in-
troducing corrections to the cosmological evolution equation.
One well-known example is the ‘‘generalized uncertainty princi-
ple’’ (GUP) [18], ∆x∆p ≥ 1/2 + αl2p/2∆p2, which allows the
introduction of quantum-gravity into ordinary quantum mechan-
ics via the deformation of the Heisenberg uncertainty principle.
Such a deformation implies the existence of a minimum length,
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∆xmin ∼ α1/2lp, and is expected to have been most apparent in
the early universe or in the high-energy regime. Another possible
generalization is the ‘‘extended uncertainty principle’’ (EUP) [19],
∆x∆p ≥ 1/2 + β/L2x∆x2, where β is a dimensionless parameter
and Lx is an unknown fundamental length scale. In contrast to the
GUP, the EUP implies the existence of aminimummomentumwith
positive values of β , ∆pmin ∼ β1/2/Lx, and is predicted to be most
apparent at later times in the universe. However, as mentioned
in [20], it is interesting that a positive cosmological constant can
only result from negative values of β , thus contradicting the EUP
prediction of a minimum momentum. In such a case, a position
measurement may not exceed an unknown length scale, i.e., the
maximum length∆xmax ∼ Lx/β1/2. By combining the EUP andGUP
(GEUP) we obtain a more general form [18,21]

∆x∆p ≥
1
2

(
1 + αl2p∆p2 +

β

L2x
∆x2

)
. (1)

This formulation of the GEUP (1) predicts the existence of both a
minimum and a maximum length (with negative values of β). It
is worth mentioning that these modified Heisenberg uncertainty
principles (i.e., the GUP, EUP, or GEUP), can yield a correction to
the Bekenstein–Hawking entropy of a black hole [22,23].

The connection between thermodynamics and gravity was
first investigated by Bardden, Carter, and Hawking [24]. There
has since then been an abundant literature on, e.g., the Rindler
space–time [25] and the Friedmann–Robertson–Walker (FRW)
universe [26]. With regard to the Rindler space–time, Jacobson
found that the Einstein equation can be derived from the thermo-
dynamic relation between heat, entropy, and temperature: dQ =
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TdS, where dQ is the energy flux and T is the Unruh temperature,
which are detected by an accelerated observer located just within
the local Rindler causal horizons. The FRW universe, on the other
hand, assumes that the apparent horizon r̃A has an associated
entropy S = A/4G and a temperature T = κ/2π in Einstein gravity,
where A and κ are, respectively, the area and surface gravity of the
apparent horizon. Akbar and Cai derived the differential form of
the Friedmann equation for a FRW universe from the first law of
thermodynamics at the apparent horizon, i.e., dE = TdS + WdV ,
where E is the total energy density of matter existing within the
apparent horizon, V is the volume contained within the apparent
horizon, and the work density W = (ρ − p)/2 is a function of the
energy density ρ and the pressure p of matter in the universe. A
modified Friedmann equation was recently suggested [27] based
on a corrected entropy formula that is potentially useful within the
context of cosmology.

The purpose of the present study is to consider cosmology
within the framework of the GEUP, i.e., by considering the min-
imum and maximum lengths, and to compare the results with
observations. The GEUP involves two parameters that can be con-
strained by measurements.

This paper is organized as follows: In Section 2, we investigate
the influence of the GEUP on thermodynamics, and obtain a cor-
rected Friedmann equation for the FRW universe. In Section 3, we
investigate the effects of the GEUP length-scale parameters α and
β , and find that the theory is consistent with the long acceleration
phase currently undergone by the universe. Section 4 presents ob-
servational constraints on our model parameters. Section 5 closes
with discussions and concluding remarks.

2. Modified Friedmann equations

This section presents calculations of the modified Friedmann
equations within the framework of the GEUP to describe cos-
mological effects. The outcome of the GEUP (1) is the modified
momentum uncertainty

∆p ≥
∆x
αl2p

⎛⎝1 −

√
1 −

l2p
L2x

αβ −
αl2p
∆x2

⎞⎠ ,

≃
1

2∆x

(
1 +

αl2p
4∆x2

+
β

L2x
∆x2

)
, (3)

with the Taylor expansion calculated at α = β = 0. As noted
in [22], the Heisenberg uncertainty principle ∆p > 1/∆x can be
rewritten in terms of a lower bound to the energy (E > 1/∆x),
which in the case of the GEUP becomes

E ≥
1

2∆x

(
1 +

αl2p
4∆x2

+
β

L2x
∆x2

)
. (4)

When a black hole absorbs or emits a classical particle of energy
E and size R, the minimal change in the surface area of the black
hole is ∆Amin ≥ 8π lpER. Arguably, the size of a quantum particle
cannot be smaller than ∆x [28], which would imply the existence
of a finite bound ∆Amin ≥ 8π lpE∆x. Thus, considering the GEUP,
we obtain

∆Amin ≥ 4π lp

(
1 +

αl2p
4∆x2

+
β

L2x
∆x2

)
. (5)

∆x is the position uncertainty of a photon which can be associated
with the black hole radius,∆x = 2rs, where rs is the Schwarzschild
radius. Given the surface area of the black hole, A = 4πr2s , the
relation between A and ∆x can be expressed as ∆x2 = A/π .

Substituting this equation into (5), the minimal area change be-
comes

∆Amin ≥ 4π lpλ

(
1 +

παl2p
4A

+
β

πL2x
A

)
, (6)

where λ is the calibration factor that is determined from the
Bekenstein–Hawking entropy formula. The entropy of the black
hole is assumed to depend on its surface area. Also, given that the
entropy increases by a factor of ln 2 at least, regardless of the value
of the area, we have

dS
dA

=
∆Smin

∆Amin
=

1
4l2p

(
1 +

παl2p
4A

+
β

πL2x
A

)−1

, (7)

where ln 2/λ = π , as mentioned above. Integrating (7), the GEUP-
corrected entropy is

S =
A
4l2p

(
1 −

παl2p
4A

ln
(

A
4l2p

)
−

β

2πL2x
A

)
. (8)

We note that the modified Bekenstein–Hawking entropy (8) arises
from the existence of the minimum and maximum lengths.

Based on the ‘‘apparent horizon’’ approach [26], we derived
the modified Friedmann equations with the modified entropy (8)
applied to the first law of thermodynamics, dE = TdS+WdV . Thus,
we considered that space–time geometry is characterized by the
FRWmetric

ds2 = −dt2 + a2
(

dr2

1 − kr2
+ r2dΩ2

2

)
, (9)

where a is a scaling factor of our universe, and the values of the spa-
tial curvature constant k = +1, 0, or −1 correspond, respectively,
to a closed, flat, or open universe. Using spherical symmetry, the
metric (9) can be rewritten as

ds2 = habdxadxb + r̃2dΩ2
2 , (10)

where x0 = t , x1 = r and r̃ = ar , and the two-dimensional metric
hab = diag(−1, a2/(1 − kr2)). In the FRW universe, a dynamic
horizon always exists because it is a local quantity of space–time,
which is a marginally trapped surface with vanishing expansion. It
is determined by the relation hab∂a r̃∂b r̃ , which yields the radius of
the apparent horizon

r̃2A =
1

H2 + k/a2
, (11)

where H = ȧ/a is the Hubble parameter. By assuming that matter
in the FRWuniverse forms a perfect fluidwith four-velocity uµ, the
energy–momentum tensor can be written

Tµν = (ρ + p)uµuν + pgµν , (12)

where ρ is the energy density of the perfect fluid and p is its
pressure. The energy conservation law, ∇µTµν

= 0, yields the
continuity equation

ρ̇ + 3H(ρ + p) = 0 . (13)

According to the main results of [26,27], applying the first law
of thermodynamics to the apparent horizon of the FRW universe
yields the corresponding Friedmann equations

8πG
3

ρ = −16πG
∫

S ′(A)
A2 dA , (14)

− π (ρ + p) = S ′(A)
(
Ḣ −

k
a2

)
, (15)
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