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a b s t r a c t

In this paper we determine the cosmological constant as a topological invariant by applying certain tech-
niques from low dimensional differential topology. We work with a small exotic R4 which is embedded
into the standard R4. Any exotic R4 is a Riemannian smooth manifold with necessary non-vanishing
curvature tensor. To determine the invariant part of such curvature we deal with a canonical construction
of R4 where it appears as a part of the complex surface K3#CP(2). Such R4’s admit hyperbolic geometry.
This fact simplifies significantly the calculations and enforces the rigidity of the expressions. In particular,
we explain the smallness of the cosmological constantwith a value consisting of a combination of (natural)
topological invariant. Finally, the cosmological constant appears to be a topologically supported quantity.
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1. Introduction

One of the great mysteries in modern cosmology is the acceler-
ated expansion of the universe as driven by dark energy. After the
measurements of the Planck satellite (PLANCK) were completed,
themodel of a cosmological constant (CC) has been favored among
other models explaining the expansion, like quintessence. In 1917,
the cosmological constantΛwas introduced by Einstein (and later
discarded) in his field equations

Rµν −
1
2
gµνR = Λgµν

(gµν is a metric tensor, Rµν the Ricci tensor and R the scalar curva-
ture). By now it seems to be the best explanation of dark energy.
However, the entire mystery of the cosmological constant lies in
its extremely small value (necessarily non-zero, seen as energy
density of the vacuum) which remains constant in an evolving
universe and is a driving force for its accelerating expansion. These
features justify the search for the very reasons explaining their
occurrences, among them the understanding of the small value of
the cosmological constant is particularly challenging. Our strategy
in this paper is to compute the value of a cosmological constant as
a topological invariant in dimension 4.
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Such an attempt is far from being trivial or even recognized
as possible. As a motivation to demonstrate the possibility, let us
consider the trace of the Einstein’s field equations

R = −4Λ

with a strictly negative but constant scalar curvature for a space-
time. It follows that the underlying spacetime must be a manifold
of constant negative curvature or admitting an Einstein metric (as
solution of Rµν = λgµν) with negative constant λ = −Λ < 0. The
evolution of the cosmos from the Big Bang up to now determines
a spacetime of finite volume. The interior of this finite-volume
spacetime can be seen as compact manifold with negative Ricci
curvature. That is why the corresponding spacetime manifold is
diffeomorphic to the hyperbolic 4-manifold (see Appendix A about
Mostow–Prasad rigidity and hyperbolic manifolds for this unique-
ness result). By Mostow–Prasad rigidity [1,2], every hyperbolic
4-manifold with finite volume is rigid, i.e. geometrical expressions
like volume, scalar curvature etc. are topological invariants. Then
the discussion above indicates that Λ might be a topological in-
variant. In fact in this paper we show how to calculate the CC
as a topological invariant based on some features of hyperbolic
manifolds of dimension 3 and 4.

It is a rather well-founded and powerful approach in various
branches of physics to look for the explanations of observed phe-
nomena via underlying topological invariants. There are many
examples of such invariant quantities known from particle physics
to solid state physics as well from the history of physics. Let
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us mention just two recent examples, i.e. topological phases in
strong electron interactions and emerging Kondo insulators as
heavy fermions [3], or the search for experimental realizations of
topological chiral superconductors with nontrivial Chern numbers
(e.g. [4]).

The distinguished feature of differential topology of manifolds
in dimension 4 is the existence of open 4-manifolds carrying a
plenty of non-diffeomorphic smooth structures. In the computa-
tion of the CC value presented here, the special role is played by
the topologically simplest 4-manifold, i.e. R4, which carries a con-
tinuum of infinitely many different smoothness structures. Each of
them except one, the standard R4, is called exotic R4. All exotic R4

are Riemannian smooth open 4- manifolds homeomorphic to R4

but non-diffeomorphic to the standard smooth R4. The standard
smoothness is distinguished by the requirement that the topologi-
cal productR×R3 is a smooth product. There exists only one (up to
diffeomorphisms) smoothing, the standard R4, where the product
above is smooth. In the following, an exotic R4, presumably small
if not stated differently, will be denoted as R4.

But why are we dealing with R4? As we mentioned already any
R4 (small or big) has necessarily non-vanishing Riemann curvature.
However, the non-zero value of the curvature depends crucially on
the embedding (the curvature is not a diffeomorphism invariant)
of R4. That is why our strategy is to look for natural embeddings of
exotic R4’s in some manifold Mn and estimate the corresponding
curvature of this R4. This curvature depends on the embeddings
in general. However, we can try to work out an invariant part
of this embedded R4. If we are lucky enough we will be able to
construct the invariant part of R4 (with respect to some natural
embeddings into certain 4-manifold M4) with the topologically
protected curvature. We would expect that this curvature would
reflect the realistic value of CC for some (canonical)M4.

There are canonical 4-manifolds into which some exotic R4 are
embeddable. Here wewill use the defining property of small exotic
R4: every small exotic R4 is embeddable in the standard R4 (or
in S4). We analyze these embeddings in Sections 3 and 4. There
exists a chain of 3-submanifolds of R4 Y1 → · · · → Y∞ and the
corresponding infinite chain of cobordisms

End(R4) = W (Y1, Y2)∪Y2W (Y2, Y3) ∪ · · ·

where W (Yk, Yk+1) denotes the cobordism between Yk and Yk+1
so that R4

= K∪Y1End(R
4) where ∂K = Y1. The End(R4) is the

invariant part of the embedding R4
⊂ R4 mentioned above. In the

first part of the paper we will show that the embedded R4 admits a
negative curvature, i.e. it is a hyperbolic 4-manifold. This follows
from the fact that Yk, k = 1, 2, . . . are 3-manifolds embedded
into hyperbolic 4-cobordismW (Yk, Yk+1) and the curvature of Yk+1,
curv(Yk+1), is determined by the curvature of Yk:

curv(Yk+1) = curv(Yk) exp(−2θ ) =
1
L2

exp(−2θ )

where L is the invariant length of the hyperbolic structure of Yk
induced from W (Yk, Yk+1), i.e. L3 = vol(Yk+1), and θ is the topo-
logical parameter θ = −

3
2CS(Yk+1)

. The induction over k leads to the
expression for the constant curvature of the cobordismW (Y1, Y∞)
as the function of CS(Y∞)

curv(W (Y1, Y∞)) =
1
L2

exp
(
−

3
CS(Y∞)

)
.

This is precisely what we call the cosmological constant of the em-
bedding R4

⊂ R4. It is the topological invariant. However, in case
of the embedding into the standard R4, Y∞ is a (wildly embedded)
3-sphere and thus its Chern–Simons invariant vanishes. This leads
to the vanishing of the cosmological constant as far as the embed-
ding into R4 is considered. We should work more globally, namely
R4

⊂ R4
⊂ M4 and look for the suitable (still canonical) M4 into

which R4 embeds and the corresponding cosmological constant of
the cobordisms, determined by the embedding, assumes realistic
value. Now the discussion is along the line of the argumentation
at the beginning of the section where we considered a hyperbolic
geometry on certain Einstein manifold. At first, one could think
that it is not possible at all, that such miracle can happen, and one
can find suitable M4 giving the correct value of CC, and even it
can, this M4 could not be canonical. A big surprise of Section 6 is
the existence of canonical M4, which is the K3#CP2 where K3 is
the elliptic surface E(2), such that the embedding into it of certain
(also canonical) small exotic R4, generates the realistic value of CC
as the curvature of the hyperbolic cobordism of the embedding.
Again the curvature is constant which is supported by hyperbolic
structure and thus it can be a topological invariant. In this well
recognized case the boundary of the Akbulut cork of K3#CP2 lies
in the compact submanifold K generating R4. The boundary is a
certain homology 3-sphere (Brieskorn sphere Σ(2, 5, 7)) which is
neither topologically nor smoothly S3, contrary to the previously
considered case of the embedding into the standardR4, and the CS
invariant of Σ(2, 5, 7) does not vanish. Exotic R4 as embedded in
K3#CP2 lies between this Brieskorn sphere and the sum of two
Poincare spheres P#P . Thus, starting from the 3-sphere (wildly
embedded) in K and fixing the size of S3 to be of the Planck length,
the subsequent two topology changes take place which allow for
the embedding R4

→ K3#CP2. Namely

S3 → Σ(2, 5, 7) → P#P .

Now the ratio of the curvature of the (wildly embedded) S3 and the
curvature of P#P is a topological invariant. Still there is a freedom
to include quantum corrections to this expression. The corrections
are also represented by topological invariants (Pontryagin and
Euler classes of the Akbulut cork). The numerical calculations of the
resulting invariant show a good agreement with the Planck result
for the dark energy density. All details are presented in Section 6.

Some of the material seems to be very similar to our previous
work [5]. Therefore we will comment about the differences be-
tween [5] and this work. Main idea of [5] is a new description of
the inflation process by using exotic smoothness. Then, inflation
as a process is generated by a change in the spatial topology. In
particular we studied a model with two inflationary phases which
will produce a tiny cosmological constant (CC). But the approach
in the paper misses many important points: it was never shown
why CC is a constant, the model uses a very special Casson handle
(so that the attachment is the sum of two Poincare spheres) and
it assumed the embedding of the Akbulut cork in the small exotic
R4. With the results of this paper, these arbitrary assumptions will
be no longer needed. CC is really a constant and we will present
the reason for the constancy (the Mostow–Prasad rigidity of the
spacetime). The model is natural, i.e. there are topological changes
starting with the 3-sphere to Brieskorn sphere Σ(2, 5, 7) and fi-
nally the change to the sum of two Poincare spheres. In contrast
to [5], there is no freedom for other topology changes in this paper.
Part of the previous work is the calculation of expansion factor
which was identified with CC. The previous calculation depends
strongly on the embedding. In this paper we will use a general
approach via hyperbolic geometry which will produce a generic
result identical to the previouswork. Therefore, some results of this
paper are similar to the previous work but obtained with different
methods for amore general case. Wewill comment on it in the last
two sections.

Secondly, we have to comment about the relation between
causality and topology change in ourmodel. As shownbyAndersen
and DeWitt [6] the singularities of the spatial topology change
imply infinite particle and energy production under reasonable
laws of quantum field propagation. Here, the concept of causal
continuity is central. Causal continuity of a spacetime means,
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