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a b s t r a c t

We discuss the physical consequences of general phase space deformations on the minisuperspace of
phantom cosmology. Based on the principle of physically equivalent descriptions in the deformed theory,
we investigate for what values of the deformation parameters the arising descriptions are physically
equivalent. We also construct and solve the quantum model and derive the semiclassical dynamics.
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1. Introduction

One of the most intriguing aspects in physics, is the current
acceleration of the Universe. Is it a consequence of modifications
to general relativity (GR) or is it a new kind of matter that drives
this acceleration?. Although having some theoretical problems, the
best answer to this question is the cosmological constant Λ. An
alternative candidate that has been successful for the description
of dark energy is the scalar field [1–6]. In particular, scalar fields
with a negative kinetic termhave been considered in the literature.
This type of fields are known as Phantom fields. They have some in-
teresting properties that allows them to be considered as a strange
but viable matter which could be relevant in the evolution of the
Universe [7]. In particular, a phantom field provides an effective
negative pressure and a repulsive effect on the matter content of
the Universe which in the long term could be responsible for the
current accelerated expansion [8–12]. Therefore it has been con-
sidered as thematter source of the late time accelerated expansion
of the Universe [13–15].

When considering the spacetime structure of the Universe it
is usually done in reference to GR. But when regarding the micro
structure of spacetime we do not have a universally accepted
quantum theory of gravity. Although there are several candidates,
noncommutativity has been considered as an alternative to under-
stand the small scale structure of the Universe and help in the con-
struction of quantum theory of gravity. For this reason, noncom-
mutative versions of gravity have been constructed [16–19]. Non-
commutativity is usually believed to be present near Planck’s scale
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and is consistent with a discrete nature of spacetime. Motivated by
this idea, it is justified to consider an inherently noncommutative
spacetime at the early ages of the universe. Directly using non-
commutative gravity is quite difficult, this is a consequence of the
highly nonlinear character of these theories [16–19]. Fortunately
there is an alternative, in [20] the authors introduce the effects
of noncommutativity using the Moyal product of functions on the
Wheeler–DeWitt (WDW) equation.

The effects of the noncommutative deformation at the classical
level was studied by a WKB approximation of noncommutative
quantum model [21] and also by modifying the Poisson alge-
bra [22,23]. More general minisuperspace deformations have been
done in connectionwithΛ [24–29]. Phase space deformations give
rise to two physically nonequivalent descriptions, the ‘‘C-frame’’
based on the original variables but with amodified interaction and
the ‘‘NC-frame’’ frame based on the deformed variables but with
the original interaction. Given this ambiguity, in [29] a principle
was proposed to restrict the value of the deformation parameters
in order to make both descriptions physically equivalent.

In this work we consider a Friedmann–Robertson–Walker
(FRW) cosmological model coupled to a phantom scalar field and
study the physical consequences of introducing general phase
space deformations on the minisuperspace of the theory. We will
study both, the classical and quantummodels andwe also find that
the semiclassical approximation of the deformed quantum model
agrees with the classical model. The deformation parameter space
is determined by considering the principle of physically equivalent
frames [29].

The paper is organized as follows. In Section 2, the commutative
model is presented. In Section 3, the minisuperspace phase space
deformation is implemented and the dynamics in the two frames
is obtained. Also the deformation parameters are constrained by

https://doi.org/10.1016/j.dark.2017.12.006
2212-6864/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.dark.2017.12.006
http://www.elsevier.com/locate/dark
http://www.elsevier.com/locate/dark
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dark.2017.12.006&domain=pdf
mailto:jlopez87@uabc.edu.mx
mailto:msabido@fisica.ugto.mx
mailto:carlos.yee@uabc.edu.mx
https://doi.org/10.1016/j.dark.2017.12.006


J.L. López et al. / Physics of the Dark Universe 19 (2018) 104–108 105

imposingphysical equivalence between the ‘‘C-frame’’ and the ‘‘NC-
frame’’. The quantum analysis is done in Section 4, we find the
solution to the deformed WDW equation and fix the parameters
in the deformation in order to make the quantization possible.
We also show that the classical paths arise from the semiclassical
approximation of the WDW equation obtained from the deformed
Hamiltonian. Finally, Section 5 is devoted for concluding remarks.

2. Phantom field model

We start with the flat FRWmetric

ds2 = −N2(t)dt2 + a2(t)[dr2 + r2dΩ] (1)

a(t) corresponds to the scale factor and N(t) is lapse function. In
this background the action of a minimally coupled phantom scalar
field ϕ(t) with constant potential is

S =

∫
dt
{

−
3aȧ2

N
− a3

(
ϕ̇2

2N
+ NΛ

)}
, (2)

where we have set the units so 8πG = 1. The minus sign in
the kinetic term of the scalar action is the difference between the
usual scalar field and the phantom scalar field [12]. The canonical
Hamiltonian derived from Eq. (2) is

− N

[
P2
a

12a
+

P2
ϕ

2a3
− a3Λ

]
. (3)

With the following change of variables

x = µ−1a3/2 sin(µϕ), (4)
y = µ−1a3/2 cos(µϕ),

and µ =
√
3/8. The Hamiltonian Eq. (3) can be rewritten as a sum

of two harmonic oscillators

H = N
(
1
2
P2
x +

ω2

2
x2
)

+ N
(
1
2
P2
y +

ω2

2
y2
)
, (5)

where ω2
= −

3
4Λ. When one considers the usual scalar field, the

Hamiltonian is transformed to a ‘‘ghost oscillator’’ which is simply
a difference of two harmonic oscillators [26,29].

3. Deformed phase space model

There exist different approaches to incorporate noncommuta-
tivity into physical theories. Particularly, in cosmology there is
a broadly explored path to study noncommutativity [20], where
noncommutativity is realized in the so called minisuperspace
variables. We will follow a deformed phase space approach. The
deformation is introduced by the Moyal bracket {f , g}α = f ⋆αg −

g⋆α f . By substituting the usual product with the Moyal product
(f ⋆ g)(x) = exp

[
1
2α

ab∂
(1)
a ∂

(2)
b

]
f (x1)g(x2)|x1=x2=x such that

α =

(
θij δij + σij

−δij − σij βij

)
. (6)

The 2 × 2 antisymmetric matrices θij and βij represent the non-
commutativity in the coordinates and momenta respectively. The
α deformed algebra becomes

{xi, xj}α = θij, {xi, pj}α = δij + σij, {pi, pj}α = βij. (7)

In this work we use the particular deformations, θij = −θϵij and
βij = βϵij.

There is an alternative to derive a similar algebra to Eq. (7).
For this we follow the procedure given in [24,26]. Start with the

transformation

x̂ = x +
θ

2
Py, ŷ = y −

θ

2
Px,

P̂x = Px −
β

2
y, P̂y = Py +

β

2
x, (8)

on the classical phase space variables {x, y, Px, Py}, these are the
variables that satisfy the usual Poisson algebra. The new variables
satisfy a deformed algebra

{̂y, x̂} = θ, {̂x, P̂x} = {̂y, P̂y} = 1 + σ , {̂Py, P̂x} = β, (9)

where σ = θβ/4. Furthermore, as in [24,26], we assume that the
deformed variables satisfy the same relations as their commutative
counterparts. The resulting algebra is the same, but the Poisson
bracket is different in the two algebras. In Eq. (7), the brackets are
the α deformed ones related to the Moyal product, for the other
algebra the brackets are the usual Poisson brackets.

To construct the deformed theory, we start with a Hamiltonian
which is formally analogous to Eq. (5) but constructed with the
variables that obey the modified algebra Eq. (9), this gives the
deformed Hamiltonian

Hnc =
1
2

[
(P2

x + P2
y ) + ℓ2(xPy − yPx) + ω̃2(x2 + y2)

]
, (10)

where ℓ2 and ω̃2 are given by

ℓ2 =
β + ω2θ

1 +
ω2θ2

4

, ω̃2
=
ω2

+
β2

4

1 +
ω2θ2

4

. (11)

There is a significant difference between the transformedHamilto-
nian of the scalar field cosmology model [26] and Eq. (10), the de-
formed Hamiltonian of the phantom cosmology model. Unlike the
scalar field case, the crossed term involving position and momen-
tum in the phantommodel, corresponds to an angular momentum
term. To understand the physics of the deformation, it is necessary
to remember that the deformation Eq. (8) defines two physical
nonequivalent descriptions, the ‘‘C-frame’’ where the effects of the
deformation are interpreted as a commutative space (x, y) but
with modification of the original interaction and the ‘‘NC-frame’’
where we work with the deformed variables (̂x, ŷ) and the original
interaction. In general, the dynamics in the two frames is different
but the physical interpretation in the ‘‘C-frame’’ is easier. In this
frame we can interpret the deformed model as a bidimensional
harmonic oscillator and the minisuperspace deformation comes
into play as an angular momentum term in the Hamiltonian. For
this reason we will do the calculations in the ‘‘C-frame’’.

We obtain the equations of motion from the Hamiltonian
Eq. (10), which in the (x, y) variables are given by

ẋ = Px −
1
2
ℓ2y, ẏ = Py +

1
2
ℓ2x, (12)

Ṗx = −
1
2
ℓ2Py − ω̃2x, Ṗy =

1
2
ℓ2Px − ω̃2y,

and get

ẍ + ℓ2ẏ +

(
ω̃2

−
ℓ4

4

)
x = 0, (13)

ÿ − ℓ2ẋ +

(
ω̃2

−
ℓ4

4

)
y = 0.

With the transformation z = x + iy we can easily solve Eq. (13).
We have three different solutions depending on the sign of ω̃2. For
ω̃2 > 0, we get

x(t) = A1 cos[(ℓ2/2 + |ω̃|)t] + B1 cos[(ℓ2/2 − |ω̃|)t], (14)
y(t) = A1 sin[(ℓ2/2 + |ω̃|)t] + B1 sin[(ℓ2/2 − |ω̃|)t],
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