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a b s t r a c t

We modify the standard relativistic dispersion relation in a way which breaks Lorentz symmetry—the
effect is predicted in a high-energy regime of some modern theories of quantum gravity. We show that it
is possible to realise this scenario within the framework of Rainbow Gravity which introduces two new
energy-dependent functions f1(E) and f2(E) into the dispersion relation. Additionally, we assume that
the gravitational constant G and the cosmological constant Λ also depend on energy E and introduce
the scaling function h(E) in order to express this dependence. For cosmological applications we specify
the functions f1 and f2 in order to fit massless particles which allows us to derive modified cosmological
equations. Finally, by using Hubble+SNIa+BAO(BOSS+Lyman α)+CMB data, we constrain the energy scale
ELV to be at least of the order of 1016 GeV at 1σ which is the GUT scale or even higher 1017 GeV at 3σ . Our
claim is that this energy can be interpreted as the decoupling scale of massless particles from spacetime
Lorentz violating effects.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

It is expected that any theory which aspires to bridge quan-
tum theory and gravity will need to include the Planck length
ℓP =

√
h̄G/c3, where h̄ is the reduced Planck constant, G is

Newton’s gravitational constant, and c is the speed of light. This
characteristic length is derived by dimensional considerations of
the constants which should appear in a regime where quantum
theory, relativity, and gravity all are significant. It is expected that
the Planck length is the minimum length which one can measure
in a meaningful way. Associated with the Planck length is the
Planck energy EPl =

√
h̄c5/G, which is simply the energy of a

photon with de Broglie wavelength ℓP . The concept of a minimum
length lies at the heart of approaches to quantum gravity such as
string theory and loop quantum gravity, and has inspired a lot of
theoretical work [1–6]. The idea of spacetime foam was put forth
in [7] and has inspired research since then. According to this idea,
quantum effects make spacetime nontrivial at small scales (the
Planck scale), where particle–antiparticle pairs are continuously
created and annihilated, curving spacetime at extremely small
length- and time scales. This ‘‘chaotic’’ picture inspired the term
‘‘spacetime foam’’, or ‘‘quantum foam’’.
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For some time themain approach to non-trivial spacetimes and
Planck-scale effects has been Lorentz violation scenarios, which
have beenwidely studied both theoretically and observationally. In
this approach, Lorentz invariance is assumed to be broken at high
energies, which introduces high-energy corrections to, for exam-
ple, the dispersion relations of high-energy particles of cosmologi-
cal origin. In recent years, the Rainbow Gravity framework [8] has
been given a lot of attention [9–23]. This is a phenomenological
approach based on Doubly Special Relativity (DSR), where the
spacetimemetric includes energy-dependent functions, and hence
describes [24,25] universes which evolve depending on the energy
of the probe particle. With the correct choice of energy depen-
dence, problems such as singularities may be avoided in Rainbow
Gravity [10]. Exploring semiclassical or phenomenological theories
of quantum gravity is of vital importance to understand the low-
energy quantum gravitational regime and to reach an understand-
ing of the underlying fundamental framework.

It has been recently reported in [26] that the Rainbow frame-
work is suitable for exploring scenarios with broken Lorentz sym-
metry [27–34]. In the light of this, we present the following analy-
sis which will be concentrated on the determination of the Lorentz
violation energy scale for relativistic particles by the observational
data from cosmology.

This paper is organised as follows. In Section 2webriefly outline
the formalism of RainbowGravity and Lorentz Invariance Violation
(LIV) scenarios. In Section 3 we describe the modified homoge-
neous Friedmann universe in the Rainbow Gravity formalism. Sec-
tion 4 is dedicated to a statistical data analysis carried out which
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allows to constrain some rainbow parameters. In Section 5 we
interpret our results and present some concluding remarks. Unless
explicitly stated, c = h̄ = 1, Greek indicesµ, ν = 0, 1, 2, 3, Roman
indices i, j, k = 1, 2, 3, and the metric signature is (−, +, +, +).

2. Rainbow Gravity & Doubly special relativity

The key idea of Rainbow Gravity is the modification of the
spacetime metric to include energy dependent functions f1(E) and
f2(E) [8], leading to a modified dispersion relation for relativistic
particles of the form:

− E2f 21 (E) + p2f 22 (E) = m2
0, (1)

and position-space invariant of the form:

ds2 = −
(dx0)2

f 21 (E)
+

(dxi)2

f 22 (E)
. (2)

wherem0 is the rest mass of the particle. x0 and xi are the time and
space coordinates, respectively. These functions are introduced
by deforming the Lorentz group to include the Planck energy
as a second invariant, using the formalism developed in Doubly
Special Relativity (DSR) [8,24,25]. By introducing the dilatation
D = pµ(∂/∂pµ), which preserves rotations but modifies boosts,
the boost generators are deformed as follows:

K i
≡ Li0 + lppiD ⇒ K i

= U−1Li0U, (3)

where lp is the Planck length and Li0 are the conventional generators
of the Lorentz group, Lµν = pµ(∂/∂pν) − pν(∂/∂pµ) [24]. U is a
non-linear momentum map. U in momentum space becomes:

Uµ(E, pi) = (U0,Ui) = (Ef1, pif2) . (4)

By demanding plane-wave solutions to free field theories, pµxµ
=

p0x0 + pixi, the momentum map in position space is given by:

Uα(x) =
(
U0,U i)

=

(
t
f1

,
xi

f2

)
, (5)

which leads to the position space invariant (and hence themetric):

s2 = ηαβUα(x)Uβ (x) = −
t2

f 21
+

(xi)2

f 22
⇒ gαβ (E) = diag

(
−f −2

1 , f −2
2 , f −2

2 , f −2
2

)
, (6)

where ηαβ are the components of the Minkowski metric. In order
to satisfy the correspondence principle, it is necessary to introduce
a constraint on f1 and f2, namely

lim
E→0

fk = 1, k = 1, 2 ⇒ lim
E→0

gµν(E) = ηµν, (7)

which restores Minkowski space in the low-energy limit [8]. In
DSR, invariants of the modified Lorentz group are accompanied by
a singularity in themomentummap U [24]. But in standard special
relativity, the only energy invariant is the infinite one. Hence, to
introduce a new invariant in the theory, the following relations
must be fulfilled:

U(Ẽ) = Ẽf1(Ẽ) = ∞, (8)

where Ẽ is some new invariant energy scale. This constraint, how-
ever, is not used by all authors; phenomenologically motivated
rainbow functions f1,2 which do not fulfill the criterion (8) can be
found in [10,1] among others.

The new metric gµν(E) defines a family of flat metrics param-
eterised by the energy E. Hence probe particles see ‘‘different
universes’’; they measure different cosmological quantities and
travel on different geodesics, but share the same set of inertial
frames [8].

In order to apply DSR to cosmology it is necessary to find the
Friedmann–Lemaitre–Robertson–Walker (FLRW) metric, as mod-
ified by Rainbow Gravity. Here the following system of units is
implied: dx0 = c0dt , c0 = 1, where c0 is the low-energy limit of
the energy-dependent speed of light, c(E) ∈ [1, 0]. Now, we need
to modify the FLRWmetric. The resulting expression is:

ds2 = −
dt2

f 21 (E)
+

a2(t)
f 22 (E)

γijdxidxj, (9)

where γij represents the 3-metrics defined in Friedmann cosmol-
ogy for the three different spacetime geometries (K = 0, ±1), and
a(t) is the scale factor. From the metric (9) we find the Einstein
equations:

Gµν(E) = 8πG(E)Tµν(E) + gµν(E)Λ(E), (10)

where all quantities now vary with energy. The tensorial quan-
tities gain their energy dependence from the rainbow functions
contained in the metric, whereas G(E) and Λ(E) get theirs from
renormalisation group flow arguments, as outlined in [8]. It is
usually assumed that G and Λ have the same energy-dependence:{
G(E) = h2(E)G0

Λ(E) = h2(E)Λ0
(11)

where the index 0 indicates the standard table value. The function
h(E), which wewill now call the ‘scaling function’ is constructed in
such a way that the standard constants G0, Λ0 are recovered in the
limit E → 0. Such form of the h-dependence for the gravitational
and cosmological constants allows the constancy of the vacuum
energy density ρΛ = Λ0/8πG0.

3. Lorentz invariance violation in Rainbow Gravity

3.1. Lorentz invariance violation

Motivated by the notion of quantum foam coined by
Wheeler [7], it has been suggested in theories of quantum gravity
that Lorentz symmetry breaks down at high energies and short
timescales [27,1]. A commonapproachwhen studying these effects
from a phenomenological point of view is to assume an effective
modified dispersion relation, manifesting itself at high energies
[34,35,35]. In relation to that we consider a modified dispersion
relation which for massless particles (whom we study from now
on) takes the form:

p2 = E2
→ p2 = E2 [1 + f (E)] , (12)

A modified dispersion relation such as the one in Eq. (12) would
lead to highly energetic particles travelling slower or faster (de-
pending on the quantum gravitational model) than their low-
energy counterparts. For studies on Lorentz violation and possible
observational tests, see [35–42,27].

In the framework of Lorentz Violation, it is often assumed that
f (E) in Eq. (12) can be expressed in a series expansion at low
energies (E ≪ Ec) [34,1,43]:

f (E) = χ1

(
E
Ec

)1

+ χ2

(
E
Ec

)2

+ O

[(
E
Ec

)3
]

, (13)

where Ec is the energy scale at which Lorentz violating effects
become strong, and the couplings χn = ±1 (n = 1, 2) are
determined by the dynamical framework being studied. It is also
assumed that the effects of Lorentz violation enter in either a linear
or a quadratic term, and thus the low-energy approximation of f (E)
can be written as [34]:

f (E) ≈ χn

(
E
Ec

)n

. (14)
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