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A B S T R A C T

Mean motion resonances play a fundamental role in the dynamics of the small bodies of the Solar System. The last
decades of the 20th century gave us a detailed description of the dynamics as well as the process of capture of
small bodies in coplanar or small inclination resonant orbits. More recently, semianalytical or numerical methods
allowed us to explore the behavior of resonant motions for arbitrary inclination orbits. The emerging dynamics is
very rich, including large orbital changes due to secular effects inside mean motion resonances. The process of
capture in highly inclined or retrograde resonant orbits was addressed showing that the capture in retrograde
resonances is more efficient than in direct ones. A new terminology appeared in order to characterize the
properties of the resonances. Numerical explorations in the transneptunian region showed the relevance and the
particular dynamics of the exterior resonances with Neptune which can account for some of the known high
perihelion orbits in the scattered disk. Moreover, several asteroids evolving in resonance with planets other than
Jupiter or Neptune were found and a large number of asteroids in three-body resonances were identified.

1. Introduction

An orbital resonance occurs when there is a commensurability be-
tween frequencies associated with the orbital motion of some bodies.
These frequencies can include the mean motion n of the bodies (in which
case we speak of a mean-motion resonance), or exclusively secular (low)
frequencies associated with the long term evolution of the longitude of
the nodes,Ω or the longitude of the perihelia,ϖ. In the dynamics of small
Solar System bodies, these commensurabilities can generate two-body
mean-motion resonances, involving the mean longitudes of the asteroid
and one planet, three-body mean motion resonances, involving the mean
longitudes of the asteroid and two planets, secular resonances involving
longitudes of the perihelia and nodes and the Kozai-Lidov (KL) mecha-
nism involving the asteroid's argument of the perihelion, ω ¼ ϖ �Ω
(Shevchenko, 2017). A very concise but complete review on orbital
resonances can be found in Malhotra (1998). In this paper we will refer
only to two-body mean motion resonances (hereafter 2BRs) and
three-body mean motion resonances (hereafter 3BRs) or, in general,
mean motion resonances (hereafter MMRs). We will focus on the main
advances of the 21st century, for earlier reviews the reader may consult
for example Nesvorný et al. (2002), Malhotra (1998) or Peale (1976).

When an asteroid, or more generally, a minor body is in a 2BR with a
planet of mass m1 their mean motions verify k0n0 þ k1n1 � 0 being n0
and n1 the mean motions of the minor body and the planet respectively
and k0 and k1 small integers with different sign. In that case we say that

the asteroid is in the resonance jk1j : jk0j. From theories developed and
valid for low-inclination orbits it was proved that the resonance's
strength is approximately proportional to m1eq, being e the orbital ec-
centricity of the resonant minor body and where q ¼ jk0 þ k1j is the order
of the resonance (Murray and Dermott, 1999). It turns out that when
considering low-inclination orbits, being e < 1, only low order reso-
nances have dynamical interest (the high-order ones have negligible
strength). The above criteria for resonant motion is just an approximation
and the precise definition of the resonant state is given by the behavior of
the critical angle σ ¼ k0λ0 þ k1λ1 þ γ being λi the quick varying mean
longitudes and γ a slow evolving angle defined by a linear combination of
the Ωi and ϖi involved. A resonant motion is characterized by an oscil-
lation, or libration, of the critical angle around a stable equilibrium point.
In the low-inclination approximation they are located at σ ¼ 0∘ or σ ¼
180∘ except for exterior resonances of the type 1:k and 1:1 resonances for
which the locations depend on the orbital eccentricity, which is why they
are known as asymmetric. A very special case of 2BR that has deserved a
lot of attention along the history of celestial mechanics since Lagrange's
times is the strong 1:1 resonance, that means coorbital objects like Ju-
piter's trojans and quasi-satellites.

On the other hand a minor body is in a 3BR with two planets of mass
m1 and m2 when the mean motions verify k0n0 þ k1n1 þ k2n2 � 0. From
theories developed for zero inclination orbits it was proved that the
resonance's strength is approximately proportional tom1m2eq, where q ¼
jk0 þ k1 þ k2j is the order of the resonance (Nesvorný and Morbidelli,
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1999). It is clear that being the masses expressed in units of solar masses
the 3BRs are orders of magnitude weaker than 2BRs. It is important to
stress that the 3BRs are not necessarily the result of the superposition of
2BRs between the intervening bodies as can be the case of the Galilean
satellites of Jupiter or some extrasolar planetary systems (Gallardo et al.,
2016). Three-body resonances exhibit also asymmetric equilibrium
points as was showed by Gallardo (2014).

The commensurabilities above mentioned generate, in the long term,
mean planetary perturbations on the minor body that are very different
from the perturbations that a non resonant minor body experiences. The
small planetary perturbation given at the right frequency gradually sums
up instead of canceling out. Resonances do not emerge as instantaneous
dynamical effects as, for example, a close encounter with a planet does.
On the contrary, it is necessary to let the system evolve for several orbital

revolutions in order that the minor body starts to feel the resonant
gravitational potential.

The resonant motion is characterized by a regular small amplitude
oscillation of the semi-major axis which preserves its mean value con-
stant over time. This mean value is given by the corresponding mean
motion n0 defined by the resonant relation. These oscillations are
correlated with oscillations in the orbital eccentricity and the librations
of the critical angle σ. The frequency of the small amplitude oscillations
are related to the resonance's strength: stronger resonances exhibit
higher frequency oscillations (Ferraz-Mello, 2007). These oscillations are
a protective mechanism that guarantees the constancy of the semimajor
axis in front of other perturbations that the object can be exposed to. In
particular, a chaotic diffusion of semi-major axis is immediately stopped
(at least temporarily) if a capture in MMR occurs. This process is very

 2  2.2  2.4  2.6  2.8  3  3.2  3.4

lo
g 

(S
tre

ng
th

)

a (au)

1-
4J

+2
S

1-
4J

+3
S

2-
7J

+4
S

1-
3J

+1
S

2-
7J

+5
S

2-
6J

+3
S

1-
3J

+2
S

3-
8J

+4
S

2-
5J

+2
S

3-
7J

+2
S 3-
8J

+5
S

2-
1M

Fig. 1. Histogram of proper a (black line) taken
from AstDyS (hamilton.dm.unipi.it/astdys) in a
normalized scale plus 2BRs (thin blue lines) and
3BRs (thick red lines). The height associated to
each resonance is in logarithmic scale and indi-
cate the relative strength calculated for a test
particle with e ¼ 0:2, i ¼ 10∘ and ω ¼ 60∘. The
scales for 2BRs and 3BRs are different. Repro-
duced from Gallardo (2014). (For interpretation
of the references to color in this figure legend, the
reader is referred to the Web version of this
article.)

Fig. 2. Proper eccentricity versus proper semimajor axis taken from AstDyS. Resonances appear as vertical structures with increasing width for increasing e. The
structure at a � 3:075 au is produced by a superposition of two resonances (see Fig. 8) and the border at the right is due to the 2:1 resonance with Jupiter.
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