
Lebedev acceleration and comparison of different photometric models in the
inversion of lightcurves for asteroids

Xiao-Ping Lu a,c,*, Xiang-Jie Huang a, Wing-Huen Ip a,b, Chi-Hao Hsia a

a Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
b Institute of Astronomy, National Central University, Taiwan
c Key Laboratory of Planetary Sciences, Chinese Academy of Sciences, Nanjing 210008, China

A R T I C L E I N F O

Keywords:
Cellinoid
Lightcurves
Asteroids
Lebedev
Photometric

A B S T R A C T

In the lightcurve inversion process where asteroid's physical parameters such as rotational period, pole orientation
and overall shape are searched, the numerical calculations of the synthetic photometric brightness based on
different shape models are frequently implemented. Lebedev quadrature is an efficient method to numerically
calculate the surface integral on the unit sphere. By transforming the surface integral on the Cellinoid shape model
to that on the unit sphere, the lightcurve inversion process based on the Cellinoid shape model can be remarkably
accelerated. Furthermore, Matlab codes of the lightcurve inversion process based on the Cellinoid shape model
are available on Github for free downloading. The photometric models, i.e., the scattering laws, also play an
important role in the lightcurve inversion process, although the shape variations of asteroids dominate the
morphologies of the lightcurves. Derived from the radiative transfer theory, the Hapke model can describe the
light reflectance behaviors from the viewpoint of physics, while there are also many empirical models in nu-
merical applications. Numerical simulations are implemented for the comparison of the Hapke model with the
other three numerical models, including the Lommel-Seeliger, Minnaert, and Kaasalainen models. The results
show that the numerical models with simple function expressions can fit well with the synthetic lightcurves
generated based on the Hapke model; this good fit implies that they can be adopted in the lightcurve inversion
process for asteroids to improve the numerical efficiency and derive similar results to those of the Hapke model.

1. Introduction

As the primitive materials at the origin of our solar system, asteroids
preserve information regarding planetary formation and their dynam-
ical processes. Demeo and Carry (2014) show the path of solar system
evolution in the perspectives of asteroidal composition and dynamical
distribution. To more clearly investigate asteroids, including their
surface compositions and inner structures, a few space missions were
launched over the past decade. For example, Hayabusa 2, following its
successful predecessor, was launched at the end of 2014 to visit the
C-type asteroid (162173) Ryugu and will return a sample from the
asteroid (Tsuda et al., 2013). Recently, in September of 2016,
OSIRIX-REx was launched by NASA to visit the B-type asteroid
(101955) Bennu (Lauretta et al., 2017). The asteroids will draw
increasing attention, especially in the middle of 2018, when both of
Hayabusa 2 and OSIRIX-REx will arrive at their respective target as-
teroids. Compared to the in-situ explorations by space missions, there

are also more surveying observations from both ground-based and
space-based telescopes. For example, NEO (Near Earth Objects) sur-
veys, such as LINEAR, Pan-STARRS and so on, have collected vast
numbers of photometric lightcurves (Jedicke et al., 2015). Moreover,
the Sloan Digital Sky Survey (SDSS) and Wide-field Infrared Survey
Explorer (WISE) (Wright et al., 2010) have been used to study asteroids
via comprehensive measurements, including the colors and albedos
(Michel et al., 2015). In addition, the Gaia satellite, launched at the end
of 2013 by ESA, is implementing its 5-year regular observation mission
for collecting the accurate positions and photometric sparse data of
sources in the solar system, and its data release 1 is now formally
published (Gaia Collaboration et al., 2016). Tanga et al. (2016) pre-
sented an overview of the asteroid observations by Gaia, covering the
data processing and orbital inversion. Cellino and Dell’Oro (2012)
indicated that the Gaia observations can be used to derive asteroid
physical properties, including masses, sizes, average densities, spin
properties, albedos, and reflectance spectra.
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Based on the different shape models, the rotational periods and pole
orientations of asteroids can be derived from the photometric observa-
tions, as well as their overall shapes. Generally, there are three commonly
used shape models. The traditional triaxial ellipsoid shape model with
three semi-axes is frequently applied in simulating the asteroids for
searching their physical properties (Surdej and Surdej, 1978; Drummond
et al., 2010; Lu et al., 2013). Furthermore, Muinonen et al. (2015) pre-
sented the method of asteroid lightcurve inversion based on application
of the Lommel-Seeliger scattering law to the ellipsoid shape, and Cellino
et al. (2015) applied this inversion method to the sparse photometric
data. For more lightcurves observed in various viewing geometries,
Kaasalainen et al. presented an inversion method based on the convex
shapemodels (Kaasalainen et al., 1992; Kaasalainen and Lamberg, 1992).
They represent the mapping function from the surface of the convex
shape onto a unit sphere by the spherical harmonics, following the
Minkowski process to determine the unique shape result (Kaasalainen
and Torppa, 2001; Kaasalainen et al., 2001; Lamberg and Kaasalainen,
2001). Moreover, shape models for hundreds of asteroids obtained by
this inversion method are available in the DAMIT database (�Durech et al.,
2010). To consider an intermediate shape between the ellipsoid and the
convex shape, the Cellinoid shape model, which accounts for asymmetric
shape features, was first presented by Cellino et al. (1989) to simulate
asteroids. Lu and Ip (2015) completed the whole lightcurve inversion
process based on this intermediate shape and first called it ‘Cellinoid’.
Furthermore, Lu et al. (2016) applied the Cellinoid shape model to the
Hipparcos data set and confirmed that it can perform particularly well in
the case of sparse photometric data, such as the Hipparcos data and the
future analogous Gaia data set.

In the lightcurve inversion process the numerical routine of simu-
lating the photometric brightness over the specified shape model con-
sumes the most CPU time. Lebedev quadrature is an efficient method to
numerically calculate the surface integral on the unit sphere (Lebedev
and Laikov, 1999). Kaasalainen et al. (2012) introduced the optimal
computation of brightness integrals by adopting the Lebedev quadrature
in their convex inversion. Lu et al. (2013) also attempted to apply the
Lebedev quadrature to the lightcurve inversion process based on ellipsoid
shape model and largely accelerated the algorithm. Before successfully
inducing the analytical formula of the brightness integral for the Celli-
noid shape model, it should be very useful to apply the Lebedev quad-
rature to the lightcurve inversion process for reducing computational
cost. In this article the mapping from the surface of Cellinoid shape to the
surface of unit sphere is presented and the brightness simulation can be
accelerated substantially by applying the Lebedev quadrature.

The scattering laws, which describe the light reflectance behaviors,
can be employed in the lightcurve inversion process of asteroids based on
photometric observations. Hapke (2012) described the theory of reflec-
tance in details and introduced the Hapke model to illustrate the bidi-
rectional reflectance of planetary photometry, incorporating the
opposition effect, regolith porosity and surface roughness based on the
single-particle scattering theory. Based on radiative transfer theory, the
Hapke model can describe the physical properties of a planetary surface;
however, its complex formula expression is not convenient for use in
numerical simulation, especially in lightcurves inversion. There are many
other photometric models, such as Lommel-Seeliger (Hapke, 2012) and
Minnaert (1941), as well as the scattering function adopted in Kaasa-
lainen's inversion method (Kaasalainen et al., 2001). These models are
numerically easy to implement in the lightcurve inversion process. Takir
et al. (2015) compared the different photometric models, including the
Minnaert and Lommel-Seeliger models, in simulating the ground-based
photometric phase curve data of the OSIRIS-REx target asteroid
(101955) Bennu. Karttunen and Bowell (1989) concluded that the vari-
ations of lightcurves depend very strongly on the body shape by
analyzing synthetic lightcurves and phase curves, generated from various
asteroid models using the Lumme-Bowell scattering law. Therefore, in
this article, three different photometric models, namely, the

Lommel-Seeliger, Minnaert, and Kaasalainen models, are compared in
simulating the synthetic lightcurves generated from the Hapke photo-
metric model and based on various shape models. An appropriate
photometric model is expected to be found for use in the lightcurve
inversion process that balances efficiency and accuracy.

In Section 2, Lebedev quadrature will be introduced in details, as well
as the corresponding brightness integral on the unit sphere, based on
mapping from the Cellinoid shape model. Next, the four photometric
models of Hapke, Lommel-Seeliger, Minnaert and Kaasalainen will be
presented in Section 3. Subsequently, the numerical simulations
comparing different photometric models will be presented. Section 4 will
discuss the implications of the numerical results. The conclusions and
plans for future works will conclude the article in Section 5.

2. Lebedev acceleration

2.1. Lebedev quadrature

Lebedev and Laikov (1999) presented an efficient tool of the surface
integral on the unit sphere that is often applied in the numerical calcu-
lation of the surface integral in the spherical coordinate system. Lebedev
quadrature can approximately transform the surface integral of the
function f over the unit sphere S,

I ¼ ∬ f ðΩÞ dΩ ¼ ∫ π
0sinðθÞ dθ∫

2π
0 dφf ðθ;φÞ; (1)

to a linear combination of the weights wi and the function values f ðθi;φiÞ
at the Lebedev grids with the grid size, i.e., Lebedev degree N,

I �
XN
i¼1

wif ðθi;φiÞ; (2)

where the sum of the weight wi is equal to the surface area W of the unit
sphere,

W ¼
XN
i¼1

wi ¼ 4π:

Compared with the two-dimensional discretization of the surface
integral (1) on the unit sphere, the linearly sum (2) makes the calculation
more efficient, and fewer Lebedev grid points are required to obtain
similar accuracy to the commonly used triangularization scheme. Fig. 1
shows the discretized unit sphere with Lebedev grids in different degrees
N and their corresponding volumes. As the benchmark, the volume of the
unit sphere can be derived analytically, V ¼ 4π=3 � 4:1888. As the
Lebedev degree increases, the discretized sphere approaches the unit
sphere. In particular, with the degree of only N ¼ 302, the volume of
discretized unit sphere is 4.1109, with the deviation of 1:86% to the
benchmark value of 4.1888. Fig. 2 shows a comparison between the
Lebedev discretization and the traditional triangularization with nearly
equal areas.

2.2. Brightness integral

As described by Lu and Ip (2015), the brightness integral based on the
Cellinoid shape model can be expressed as,

BðE0;EÞ ¼ ∬ CþSðμ; μ0; αÞ ds; (3)

where Sðμ; μ0; αÞ is the scattering function with the definitions of μ and
μ0, representing the projections of viewing and illuminating unit vectors
on the unit normal vector of each facet ds, α is the solar phase angle, and
Cþ is the part of the Cellinoid surface that is both illuminated by Sun and
observable from Earth, i.e., μ0 > 0; μ > 0.

Following the definition of the brightness integral (3), the numerical
quadrature can be applied to calculate it, as the analytical formula has
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