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A B S T R A C T

The important aspect in the study of the structure of the interiors of planets is the question of the presence and
state of core inside them. While for the Earth this task was solved long ago, the question of whether the core of the
Moon is in a liquid or solid state up to the present is debatable up to present. If the core of the Moon is liquid, then
the velocity of longitudinal waves in it should be lower than in the surrounding mantle. If the core is solid, then
most likely, the velocity of longitudinal waves in it is higher than in the mantle. Numerical calculations of the
wave field allow us to identify the criteria for drawing conclusions about the state of the lunar core.

In this paper we consider the problem of constructing an analytical solution for wave fields in a layered sphere
of arbitrary radius. A stable analytic solution is obtained for the wave fields of longitudinal waves in a three-layer
sphere. Calculations of the total wave fields and rays for simplified models of the Earth and the Moon with real
parameters are presented. The analytical solution and the ray pattern showed that the low-velocity cores of the
Earth and the Moon possess the properties of a collecting lens. This leads to the emergence of a wave field
focusing area. As a result, focused waves of considerable amplitude appear on the surface of the Earth and the
Moon. In the Earth case, they appear before the first PKP-wave arrival. These are so-called “precursors”, which
continue in the subsequent arrivals of waves. At the same time, for the simplified model of the Earth, the
maximum amplitude growth is observed in the 147-degree region. For the Moon model, the maximum amplitude
growth is around 180�.

1. Introduction

The important aspect in the study of the structure of the interiors s of
planets is the question of the presence and state of cores inside them.
While for the Earth this task was solved long ago, the question of whether
the core of the Moon is in a liquid or solid state up to the present is
debatable up to present. If the core of theMoon is liquid, then the velocity
of longitudinal waves in it should be lower than in the surrounding
mantle. If the core is solid, then most likely, the velocity of longitudinal
waves in it is higher than in the mantle. Numerical calculations of the
wave field allow us to identify the criteria for drawing conclusions about
the state of the lunar core.

In this paper we consider the problem of constructing a stable analytic
solution for wave fields in a layered sphere of arbitrary size. After the
Fourier- Legendre transformations, the statement of the problem reduces
to the consideration of a two-parameter family of boundary-value

problems for ordinary differential equations. The solution of the latter
problem in each spherical layer is in the form of a linear combination of
Bessel functions (Tikhonov and Samarskii, 1997). The unknown co-
efficients are determined from known conjugation conditions on the
boundary of spherical layers. As a result, a matrix system of linear
equations is obtained for their determination. For a small number of
layers, its solution can be obtained in explicit form. Since Bessel functions
of different types tend to zero and infinity rapidly, uncertainty arises in
the solution. And the more the radius of the sphere in relative values
(wavelengths), the faster it arises. In this situation, computer calculations
become unstable. To construct a stable solution, it is proposed to use the
classic asymptotic of Bessel functions (Korneev and Johnson, 1993). In
the article (Fatyanov, 2016) it is shown that the classical asymptotic
behavior of Bessel functions gives an error in the solution. To construct
the solution, we use the new asymptotes of cylindrical functions obtained
in the article (Fatyanov, 2016). This gives a stable analytical solution for
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wave fields in an inhomogeneous sphere of arbitrary size.
The results of calculations of wave fields for simplified models of the

Moon and the Earth are presented. The Moon model consists of a mantle
and a low-velocity core, which implies its liquid state. The Earth model
consists of a mantle, an external liquid core and an internal solid core
with real parameters (Burmin, 2004). As a result, in the interiors of the
Moon and the Earth the area of focusing of the wave field appears. This is
due to the fact that the low-speed core of the Earth and possibly the core
of the Moon have the properties of a collecting lens. For the Earth, the
focused waves go to the surface before the first arrival of the PKPwave. In
optics the fact that spherical bodies possess the properties of a collecting
lens is well known (Kravzov and Orlov, 1980). It turns out that in seis-
mology this phenomenon also exists.

2. Formulation of the problem

Themathematical statement of the problem of modeling the P-wave is
formulated in a spherical coordinate system ð0 � r � R1; 0 � θ � π;
0 � ϕ � 2πÞas follows: define a function uðr; θ;ϕ; tÞ from equation
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In (1), (2) R1 – the radius of the sphere, fr – is the source function over
space, f ðtÞ is the source function with respect to time t.

At boundaries r¼Rj where the velocity of longitudinal waves v(r)
suffers a discontinuity, known conjugation conditions are introduced
(Tikhonov and Samarskii, 1997):

½u� ¼
�
∂u
∂r

�����
r¼R

¼ 0: (3)

3. Analytical solution

In the case of a concentrated action fr ¼ δðr � dÞ δðθÞ
d2 sin θ applied at a

point r ¼ dand θ ¼ 0 displacement field uðr; θ; tÞ independent of the
coordinate ϕ is excited. At the first stage the solution is searched in the
form of Fourier decomposition - Legendre in the variables ðθ; tÞ
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1ffiffi
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uðr; k;ωnÞexpðiωntÞPkðcos θÞ: (4)

Here PkðxÞð� 1 � x � 1Þ, is the Legendre polynomial, ωn ¼ nπ=T:
The coefficients of expansion are determined by the formula:

uðr; k;ωnÞ ¼ 2k þ 1
2

∫ 1
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0 Pkðcos θÞuðr; θ; tÞexpð � iωntÞd cos θdt: (5)

As a result, problem (1)–(2) is reduced to a two-parameter family (k,
ωn) of boundary-value problems in each spherical layer Rjþ1< r <Rj

(Fatyanov, 1981). To reduce the recording, nonessential variables are
denoted by the letter c, and inessential indexes are omitted
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The conjugation conditions (3) take the form:
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0:5
r
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¼ 0: (7)

The paper deals with the case of a three-layered sphere. The bound-
aries are located at distances r ¼ R2;R3 from the center of the sphere. The
velocities of longitudinal waves in spherical layers are v1, v2, v3. The
solution in each spherical layer is defined as a linear combination of
Bessel functions (Tikhonov and Samarskii, 1997).

uðr; k;ωÞ ¼ c1Jkþ0:5ðωr=v1Þ þ c2J�k�0:5ðωr=v1Þ; R2 < r < R1 (8)

uðr; k;ωÞ ¼ c3Jkþ0:5ðωr=v2Þ þ c4J�k�0:5ðωr=v3Þ; R3 < r < R2

Moreover, in the inner spherical shell (containing a center of the
sphere)

uðr; k;ωÞ ¼ c5Jkþ0:5ðωr=v3Þ (9)

The unknown coefficients c1,c2,c3,c4,c5 are determined from the
conjugation conditions on the boundaries of the velocity discontinuity v
(7). In the case when the source is located on the surface of the sphere
(r¼R1) we obtain a system of 5 equations with five unknowns:
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In system (10) v¼ kþ0.5.
From (10) we find a solution in the spectral region for a three-layered

sphere on its surface.
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